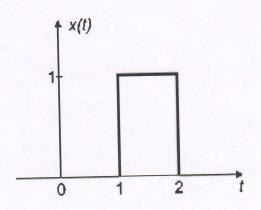
$\mathbf{Q1:}$ Find the autocorrelation of the following signal:

$$g(t) = e^{-at} u(t)$$
, a > 0.

Then, use the Wiener-Khintchine theorem to determine the energy spectral density of the signal.

(20%)

Q2: Determine and sketch the output y(t) of a LTI system with the impulse response h(t) and the input signal x(t) are given in Fig.(1).



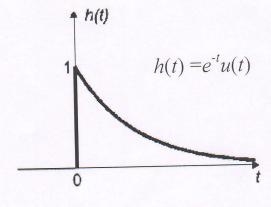


Fig.(1)

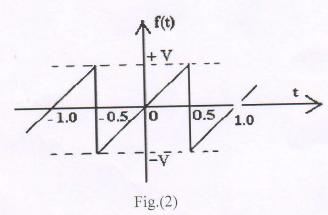
(20%)

Q3: Consider an ideal low-pass filter with frequency response:

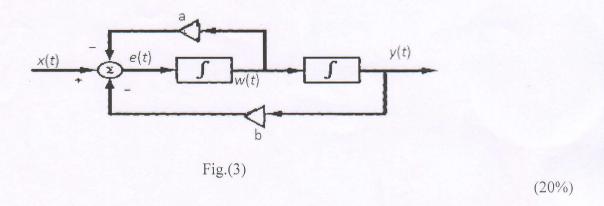
$$H(\omega) = \begin{cases} 1, & |\omega| \le 11\pi \\ 0, & |\omega| > 11\pi \end{cases}$$

The input to this filter is the periodic signal f(t) shown in Fig.(2). Find

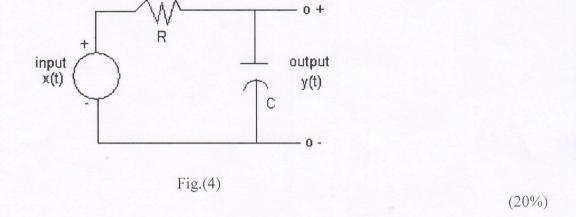
- (i) The trigonometric Fourier series of the input f(t) and draw its amplitude spectrum .
- (ii) The output response of the filter y(t) .



Q4: The continuous-time system shown in Fig.(3) consists of two integrators and two scalar multipliers. Write a differential equation that relates the output y(t) and the input x(t).



Q5: For the simple continuous-time RC frequency-selective filter shown in Fig.(4), obtain the frequency response $H(j\omega)$. Sketch the magnitude and phase responses for $-\infty < \omega < \infty$.



 $\mathbf{Q6}$: A continuous-time signal x(t) is shown in Fig. (5). Sketch and label each of the following signals:

(a)
$$x(t) u(1-t)$$
 (b) $x(t) \left[u(t) - u(t-1)\right]$ (c) $x(t) \delta\left(t - \frac{3}{2}\right)$

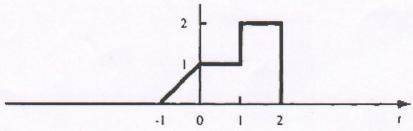


Fig. (5)

(20%)