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PARTIAL DERIVATIVES

Functions of Several Variables

Many functions depend on more than one independent variable. The function ¥V = 7r2h
calculates the volume of a right circular cylinder from its radius and height. The function
f(x,¥) = x* + y? calculates the height of the paraboloid z = x* + y? above the point
Pix, v) from the two coordinates of P. The temperature T of a point on Earth’s surface
depends on its latitude x and longitude y, expressed by writing T = f(x, ¥). In this sec-
tion, we define functions of more than one independent variable and discuss ways to
graph them.

Real-valued functions of several independent real variables are defined much the way
you would imagine from the single-variable case. The domains are sets of ordered pairs
(triples, quadruples, n-tuples) of real numbers, and the ranges are sets of real numbers of
the kind we have worked with all along.

DEFINITION Partial Derivative with Respect to x
The partial derivative of f(x, y) with respect to x at the point (xg, yp) is

af _ i flxg + h,yo) — flxo, o)
— = lim .
dx h—0 h

(o, )
provided the limit exists.

An equivalent expression for the partial derivative 1s

2 fx,30)

X=Xp
The slope of the curve z = f(x, ) at the point P(xg, vo, f(x0, ¥o)) in the plane ¥ = 3y
is the value of the partial derivative of f with respect to x at (xp. yo). The tangent line to
the curve at P is the line in the plane y = y; that passes through P with this slope. The par-
tial derivative df/dx at (xg, o) gives the rate of change of f with respect to x when y is held
fixed at the value vy . This is the rate of change of f in the direction of i at (xp, yg).
The notation for a partial derivative depends on what we want to emphasize:
% (x0, vo) or folxg, o) “Partial derivative of f with respect to x at (xg, yo)” or “f sub
x at (xp, yo).” Convenient for stressing the point (xp, ).

g—i “Partial derivative of z with respect to x at (x, yg).”
(xv. 30) Common 1n science and engineering when you are dealing
with variables and do not mention the function explicitly.
af oz &k - : - - L] -
[ T2 20 OF 5 Partial derivative of f (or z) with respect to x.” Convenient

when you regard the partial derivative as a function in its
own right.



The definition of the partial derivative of f(x, v) with respect to y at a point (xg, ¥g) is
similar to the definition of the partial derivative of f with respect to x. We hold x fixed at
the value x; and take the ordinary derivative of f(xg, ) with respect to y at 3.

DEFINITION Partial Derivative with Respect to v
The partial derivative of f(x, y) with respect to y at the point (xg, yo) is

af _d e = tm flxo. 30 + h) — flxo, 30)
Wl & g '

w B0
provided the limit exists.

The slope of the curve z = f(xy, y) at the point P(xy, vy, f(xg, vg)) in the vertical plane
x = x (Figure 14.14) is the partial derivative of f with respect to y at (x;., ¥y). The tangent
line to the curve at P is the line in the plane x = xj that passes through P with this slope.
The partial derivative gives the rate of change of f with respect to v at (xp, yo) when x is
held fixed at the value x;;. This is the rate of change of f in the direction of j at (xp, yp).

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

d d
% {xﬂs _}"ﬂ)i fy{-’fll-.- _Vﬂ)! %‘I .f_v .

Notice that we now have two tangent lines associated with the surface z = f(x, v) at
the point P(xg, vo. f(x0, y0)) (Figure 14.15). Is the plane they determine tangent to the sur-
face at P7T We will see that it is, but we have to learn more about partial derivatives before
we can find out why.

Z

This tangent line Pixg. };n‘_ﬂxu,}'ul}]

has slope f(xg, ¥g). This tangent line

has slope fi{xg. yp).

The curve z = fixg. ¥)

in the plane x = x; The curve = = fix, yg)

in the plane ¥ = ¥y

2= flx.y)

(xg, yp) ¥
FIGURE 14.15 Figures 14.13 and 14.14 combined. The tangent
lines at the point (xg. vo. fixp. o)) determine a plane that, in this
picture at least, appears to be tangent to the surface.



EXAMPLE 1  Finding Partial Derivatives at a Point
Find the values of 3 f/dx and 4 f/dy at the point (4, —5) if
flr,y) =x>+3xy+y— L

Solution To find af/ax, we treat y as a constant and differentiate with respect to x:

d
£=%(x2+33g:+y— 1)=2x+3-1-y+0—0=2x + 3.
The value of af /dx at (4, —5)is 2(4) + 3(—5) = —T.

To find 8f/dy, we treat x as a constant and differentiate with respect to y:
af _
dy

The value ofaf/dy at(4, —5) is 3(4) + 1 = 13.

%[_r2+3xy+}:—l]={}+3-x-]+l—ﬂ'=3x+1.

EXAMPLE 2  Finding a Partial Derivative as a Function
Find af/ay if f(x,y) = ysinxy.

Solution We treat x as a constant and f as a product of v and sin xy:

af g : a . ) a
- 5(}*5"1 xy) =¥ gy Sinxy + (smx}*)a—y(})

= [ ycos] ixv + =Inxy = xycosxy + sinxy.
] Xy) = X xy ] Xy )

-

Second-Order Partial Derivatives

When we differentiate a function f(x, v) twice, we produce its second-order derivatives.
These derivatives are usually denoted by

32
a—{ “d squared fdx squared” or fx “f sub xx”
X
a*f
E “d squared fdy squared” or fi “f sub "
azf (1} bt " *»
axay d squared fdx dv’ or fix f sub yx
azf 1] L 11 N
ayox d squared fdy dx’ or Sy f sub xy

The defining equations are
Ff_a (Y T _a (U
axl  dx \ax )7 dxdy  ox \ay J°

and so on. Notice the order in which the derivatives are taken:



a‘f

oy [hfferentiate first with respect to v, then with respect to x.

Fx = (il Means the same thing.

EXAMPLE 9  Finding Second-Order Partial Derivatives
If f(x,y) = xcosy + ye’, find
atf atf atf af

al B g M Gy

Solution
af  a . af g .
E—E(xcosy+ye] @—@[xccsy-l-ye]

= cosy + ye” = —xsiny + e*
So So

2 2
Bf_ii__‘._FI ﬂ_ig__‘._kx
ayax _ ay \ax ) ooV T € axdy  ax \ay) VT E
Pf_a (N _ . Pf_ 3 () 2 s osy
2 = ax \ax ) = ¢" o2~ ay \ay) = xcosy

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because
these appear the most frequently in applications, there is no theoretical limit to how many
times we can differentiate a function as long as the derivatives involved exist. Thus, we get
third- and fourth-order derivatives denoted by symbols like

af f
ﬂxﬂ'}'z o
a'f "

ﬂxzﬂyl i

and so on. As with second-order derivatives, the order of differentiation 1s immaterial as
long as all the denivatives through the order in question are continuous.

EXAMPLE 11  Calculating a Partial Derivative of Fourth-Order

Find fy: if f(x,3.2) = 1 — 209% + x%.

Solution We first differentiate with respect to the vanable y, then x, then y again, and
finally with respect to z:

fy=—4z + x?
fiz=—%hz +Ix
Joy = —42
froz = —4 u



The Chain Rule

The Chain Rule for functions of a single variable studied in Section 3.5 said that when
w = f(x) was a differentiable function of x and x = g(¢) was a differentiable function of't,
w became a differentiable function of t and dw)/df could be calculated with the formula

dw _ dwdx
dt ~ dv dt’

Functions of Two Variables

The Chain Rule formula for a function w = f(x, ¥) when x = x(f) and y = y{¢) are both
differentiable functions of ¢ is given in the following theorem.

THEOREM 5  Chain Rule for Functions of Two Independent Variables

If w = f(x, ) has continuous partial derivatives f, and f, and if x = x{1), y = »(1)
are differentiable functions of f, then the composite w = f(x(¢), ¥(¢)) is a differ-
entiable function of r and

% = filx(), (1)) - x'(8) + filx(£), (1)) - ¥"(2),

or

dw _ O dx | Of dy
dt — dxdr " dydt

To remember the Chain Rule picture the
diagram below. To find dw/ds, start at w
and read down each route to «,
multiplying derivatives along the way.
Then add the products.

Chain Rule
w = fix, ) Dq_:endent
. variable
aw SN w
ax \:.l}'
. Intermediate
x >" variables
ax s
df dt

%,
",

‘{ Independent
variable

dw _awdx  iwdy

dt — dx dt  dy dt



EXAMPLE 1  Applying the Chain Rule
Use the Chain Rule to find the derivative of
w = Xy
with respect to ¢ along the path x = cosf, v = sinf. What is the derivatives value at
t =727
Solution We apply the Chain Rule to find dw/dt as follows:

dw _dwdx _awdy
dt ~ dx dr Ay dt

axy) d ixy) d, .
= ~ax -E[msr]-l- 3y -E[sm:}

= (¥)(—sint) + (x)(cosi)
= (sint)(—sinf) + (cost)(cos i)

= —sin’t + cos’t
= cos 21

In this example, we can check the result with a more direct calculation. As a
function of ¢,

. 1 .
W =Xy = costsinf = Esmir,

% _ %(%sinb‘) :%- 2cos 2t = cos2f.

THEOREM 6  Chain Rule for Functions of Three Independent Variables

If w = f(x, y, z) is differentiable and x, v, and z are differentiable functions of ¢,
then w 1s a differentiable function of ¢ and

dw _ g D b
dt  axdt dvdt odzdt

EXAMPLE 2 Changes in a Function’s Values Along a Helix
Find dw/dt if

w=xy + z, X = cost, ¥ = sinf, z =1



| Here we have three routes from w to ¢
instead of two, but finding dw/dt is still
the same. Read down each route,
multiplying derivatives along the way;

then add.
Chain Rule
w = flx, ¥, z) Dependent
varable
iw \ aw
ax /" fw iz
/oy
# . A Intermediate
* ™ )z variables
dy /
dx\di| /d
dt / dt
/ Independent
variable

dw_pwdx iwdy iwdz
dt — dx df  dy dt 9z di
Solution

dw _dwdy  owdr | awds
dt  dxdt dvdt 9z dt

= (y)(—sint) + (x){cos ) + (1)(1)

= (sin#)(—sint) + (cost)(cost) + 1

= —sin’t + cos?t+ 1 =1+ cos2t.

dw o _
(dr), T 1 + cos(0) = 2.

THEOREM 7 Chain Rule for Two Independent Variables and Three
Intermediate Variables

Suppose that w = f(x,v,z),x = glr.s),y = h(r,s), and z = Kr, 5). If all four

functions are differentiable. then w has partial derivatives with respect to » and s,

given by the formulas

dw _dwox , awd | dwaz
ar dx dr oy dr dz dr
aw _dwéx  owd  dwaz
ds  dxds dyads Oz ds”

The first of these equations can be derived from the Chain Rule in Theorem 6 by hold-
ing 5 fixed and treating r as {. The second can be derived in the same way, holding » fixed
and treating s as . The tree diagrams for both equations are shown in Figure 14.19.



Dependent

variable
f
. [ [
Intermediate | [ . -
variahles : . :
Independent
variables
p 5
w = figlr.s). h(r,5), k(r,s) dw _dwax dwdy owdz dw _dwdx . dwady  dwdz
dr  dx d@r iy dr iz dr ds  dx ds  dy d5 9z ds

(a) ib) ic)
FIGURE 14.19 Composite function and tree diagrams for Theorem 7.

EXAMPLE 3  Partial Derivatives Using Theorem 7

Express dw/dr and dw/ds in terms of r and s if
w=x+2y+zz, x=£, y=r2+ln5, z=2r
Solution

dw _dwox  dw | awaz
dr dx dr  dy dr dz dr

- (1)(}%) + ()2 + (22)(2)

Substitute for intermediate
variable z.

=l rane=1+12r

dw _dwix  awd | awaz
ds dx ds dy ds dz ds

w(-%) + @)+ a0 =2-4

5

Directional Derivatives and Gradient Vectors

Here’s a physical interpretation of the directional denvative. Suppose that T = f(x, v)
is the temperature at each point (x, ¥) over a region in the plane. Then f(xg, yy) is the tem-
perature at the point Py(xg, yo) and (Dy f)p, is the instantaneous rate of change of the tem-
perature at Py stepping off in the direction .



DEFINITION Gradient Vector
The gradient vector (gradient) of f(x, ¥) at a point Py(xg, »p) is the vector

i d
o= s

obtained by evaluating the partial derivatives of f at Py.

The notation Vf is read “grad f* as well as “gradient of f and “del f.” The symbol V
by itself is read “del.” Another notation for the gradient is grad f, read the way it 1s
written.

Equation (3) says that the derivative of a differentiable function f in the direction of u
at Py 1s the dot product of u with the gradient of f at Py.
EXAMPLE 2  Finding the Directional Derivative Using the Gradient

Find the derivative of f(x, y) = xe* + cos(xy) at the point (2, 0) in the direction of
v = 3i — 4.

Solution The direction of v is the unit vector obtained by dividing v by its length:

v v 3 4

“=m=§=§i—§j.

The partial derivatives of f are everywhere continuous and at (2, 0) are given by
£(2,0) = (e = ysin(x))pg = e’ —0 =1
f(2,0) = (xe* — xsin (xp))pg = 2¢" — 20 = 2.
The gradient of fat (2,0)1s
Vo = f(2,00i + f(2,0)j =1+ 2j
(Figure 14.26). The derivative of f at (2, 0) in the direction of v 1s therefore
(Duf)|2z0) = Vfl@oy-u  Equation (4)

o o (3. 4.y _3 B _
= (i + 2j) (—51 _5")__5__5_ 1. [ |
Evaluating the dot product in the formula

Dyf = Vf-u=|Vf||u|cos# = |Vf|cos8h,

where # 1s the angle between the vectors u and V/, reveals the following properties.



Properties of the Directional Derivative D,f = Vf-u = | Vf|cos#

1. The function f increases most rapidly when cos @ = | or when u is the
direction of V£. That is, at each point P in its domain, f increases most
rapidly in the direction of the gradient vector Vf at P. The derivative in this

direction 1s
Duf = |Vf|cos (0) =|Vf].
2. Similarly, f decreases most rapidly in the direction of —V{. The derivative
in this direction is Dyf = |Vf|cos (7)) = —| Vf|.
3.  Any direction u orthogonal to a gradient V/ # 0 is a direction of zero
change in f because # then equals 7/2 and

Dof = |Vf|cos(w/2) = |Vf|-0=10.

EXAMPLE 3  Finding Directions of Maximal, Minimal, and Zero Change
Find the directions in which f(x, v) = (x%/2) + (%/2)

(a) Increases most rapidly at the point (1, 1)

{(b) Decreases most rapidly at (1. 1).

(¢) What are the directions of zero change in f at (1, 1)?7

Solution

(a) The function increases most rapidly in the direction of Vf at (1, 1). The gradient th
1S

(Vo =& +yign=i+j.
Its direction is
i+ i+
u=- J = ,—J L + 1,_j.
H+il )2+ ()2

— i /
V2 V2

(b) The function decreases most rapidly in the direction of —Vf at (1, 1), which is




DEFINITION Total Differential
If we move from (x;, ¥) to a point (x; + dx, ¥y + dv) nearby, the resulting change

df = fx[xﬁﬁyﬁ] dx + f_v{xﬂﬁ .}"D') d}:

in the linearization of f is called the total differential of f.

EXAMPLE 7  Estimating Change in Volume

Suppose that a cylindrical can 1s designed to have a radius of | in. and a height of 51in., b
that the radius and height are off by the amounts dr = +0.03 and dh = —0.1. Estima
the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in V' = ﬂrzh, we use
AV = dV = Vi(rp, ho) dr + Vilro, ho) dh.
With ¥, = 2@rh and V), = 72, we get
dV = 2arghy dr + wrgt dh = 2w(1)(5)(0.03) + «(1)%(—0.1)
= 037 — 0.17 = 027 = 0.63 in.’

Extreme Values and Saddle Points

THEOREM 11 Second Derivative Test for Local Extreme Values
Suppose that f(x. y) and its first and second partial derivatives are continuous
throughout a disk centered at (a, b) and that f{a. b) = f,(a, b) = 0.Then

i. fhasalocal maximum at (a, b)if fx < Oand f fy — fl}.z > 0at(a, b).
ii. f hasalocal minimum at (a, b)if fr = Oand f f,, — fx_yz = Oat(a, b).
iii. f has a saddle point at (a, b) if f f5; — fx_,.z < 0 at (a, b).

iv. The test is inconclusive at (a, b) if fi. f,, — x}_z = 0 at (a. b). In this case,
we must find some other way to determine the behavior of f at (a. b).

The expression f.. f,, — _fr_l.z is called the discriminant or Hessian of f. It is some-
times easier to remember it in determinant form,

R
fl'_.‘-' f}:‘"

fafy = f" =




EXAMPLE 3  Finding Local Extreme Values
Find the local extreme values of the function

fay) =xy —x =y’ -2 -2y + 4

Solution The function is defined and differentiable for all x and y and its domain has

no boundary points. The function therefore has extreme values only at the points where f,
and f, are simultaneously zero. This leads to

fr=yv—2x—2=0, =x—-2y—2=0,
or
x=y=—2

Therefore, the point (—2, —2) is the only point where f may take on an extreme value. To
see 1f it does so, we calculate

fn = _2.1 f_,._,. == —2’ f]}' = ]..
The discriminant of fat (a, b) = (=2, —2)1s

fﬂf-}ji - f_-g-2 = (_2}[_2) - (1]2 =4—-1=3.

The combination

fa <0 and fofy — for =0

tells us that f has a local maximum at (—2, —2). The value of f at this point is
f(—2,—-2) = 8. |

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function f(x, y) on a
closed and bounded region R into three steps.

1. List the interior points of R where f may have local maxima and minima and evaluate
f at these points. These are the critical points of f.

2. List the boundary points of R where f has local maxima and minima and evaluate f at
these points. We show how to do this shortly.

3. Look through the lists for the maximum and minimum values of f. These will be the
absolute maximum and minimum values of f on R. Since absolute maxima and min-
ima are also local maxima and minima, the absolute maximum and minimum values
of f appear somewhere in the lists made in Steps | and 2.



FIRST-ORDER
DIFFERENTIAL EQUATIONS

First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

d
= + Plx)y = 0(x), M)

where P and ( are continuous functions of x. Equation (1) is the linear equation’s
standard form. Since the exponential growth/decay equation dv/dx = ky (Section 6.5)
can be put in the standard form

dy
E - k}’ = ':}.,
we see it is a linear equation with P(x) = —k and Q(x) = 0. Equation (1) is linear (in y)

because y and its derivative dy/dx occur only to the first power, are not multiplied together,
nor do they appear as the argument of a function {su-:h assiny, e*, or \/ 'dyfdx}.

EXAMPLE 2  Solve the equation

x%=xz+3y, x =0,

Solution First we put the equation in standard form (Example 1):

dv 3
XV

so P(x) = —3/x is identified.
The integrating factor is

u(x) = ef PRdr — o f(=3/x)dx

Constant of integration is 0,

——
= eIl s0 11 15 as simple as possible.
= g ¥ x>0
— 1€,IrL:r"] — L}
xX
1 / !
—v= [ =dx . -
x3 x2 Integrate both sides.
1 1
=V="3 + C.

X



Exact ODEs.

M(x,y) dx + Nix, y)dy = 0

is called an exact differential equation if the differential form Mix, v) dx + Nix, v) dv
is exact, that is, this form is the differential

aM  aN
du i - =-
(a) ax (b) ay
u=fMdr+R{y}; u=dey+£{x‘j.
Solve
M cos (x + y) dx + (3" + 2y + cos (x + y)) dy = 0.

Solution, Step 1. Test for exactness. Our equation is of the form (1) with
M= cos (x + ¥),

N= 3}'2 + 2y + cos {x + ¥

Thus
M in (x + v
— = —sin(x + ¥
ay :
aN ) Ly
r sin (x + V).

From this and (53) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration
(&) U= fMdr + Ky} = fu:cus (x + ¥y dx + k() = sin {x + y) + Ky

To find E(y), we differentiate this formula with respect to v and use formula (4b), obtaining

i , :I+d'k N=3E 4+ 2y + x+y)
— =mE(x+ ¥ — =N=13y 2y + cos (x ).
. ¥ dy ¥ -¥ ¥

[

Hence difdy = 3}'2 + 2y. By integration, k = }'3 + }'3 + o*, Inserting this result into (8) and observing (3),

we obtain the answer

wx. ) =sin(x +y) +y +y¥ =0



SECOND-ORDER
DIFFERENTIAL EQUATIONS

Constant-Coefficient Homogeneous Equations

Suppose we wish to solve the second-order homogeneous differential equation

ay" + ' + ey =0,

THEOREM 3 If | and > are two real and unequal roots to the auxiliary
equation ar® + br + ¢ = 0, then

¥y =ce" + e’

is the general solution to ay” + by' + ¢y = 0.

EXAMPLE 1  Find the general solution of the differential equation

[

¥ =3y =y =0
Solution Substitution of v = ¢™ into the differential equation yields the auxiliary
equation
rr—r—6=0,
which factors as
(r—3)r+2)=0
The roots are | = 3 and r» = —2. Thus, the general solution is

y = c.el" + cze_l". [ |

THEOREM 4 If » is the only (repeated) real root to the auxiliary equation
ar’ +br+ ¢ = 0, then

v =ce™ + cpxe™

is the general solution to ay” + by" + ¢y = 0.




EXAMPLE 2  Find the general solution to
¥+ 4+ 4y =0.
Solution The auxiliary equation is
Pt A+ 4 =0,
which factors into
(r+ 2)? = 0.
Thus, ¥ = —2 is a double root. Therefore, the general solution is

y= c]e_?" + czxe_z". [ |

THEOREM 5 If ri =« + i and r» = o« — i3 are two complex roots to the
auxiliary equation ar® + br + ¢ = 0, then

¥ = e™(cjcos Bx + c2sin Bx)

is the general solution to ay” + by + cy = (.

EXAMPLE 3  Find the general solution to the differential equation
¥ =+ 5y =0
Solution The auxiliary equation 1s
rf—4r+5=0

The roots are the complex pair » = (4 £ V16 — 20)/20rr =2 + iand 12 = 2 — i
Thus, ® = 2 and 3 = 1 give the general solution

¥ = e™c, cosx + ¢ sinx). [ |

Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution
Suppose we wish to solve the nonhomogeneous equation

ay” + by' + oy = Gix), (1)



THEOREM 7 The general solution ¥ = y{(x) to the nonhomogeneous differen-
tial equation (1) has the form

¥ =yt ¥,

where the complementary solution y. is the general solution to the associated
homogeneous equation (2) and y; 1s any particular solution to the nonhomoge-
neous equation ( 1).

The Method of Undetermined Coefficients
EXAMPLE 1  Solve the nonhomogeneous equation " — 2y’ — 3y = 1 — x7.

Solution The auxiliary equation for the complementary equation " — 2y" — 3y = 01is
=2 —3=(+1r—3)=0.
It has the roots » = —1 and r = 3 giving the complementary solution

ye = cre ¥ + e’

Now G(x) = 1 — x? is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then " — 23’ — 3y is also a polynomial of de-
gree 2. So we seek a particular solution of the form

vp = Ax* + Bx + C.

We need to determine the unknown coefficients 4, B, and C. When we substitute the poly-
nomial y, and its derivatives into the given nonhomogeneous equation, we obtain

24 —2Q4x + B) — 3(Ax* + Bx+ O) =1 — x?
or, collecting terms with like powers of x,
—34x? +(—44 — 3Bx + (24 —2B—30) =1 — x%.

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

—34 = -1, —44 — 3B =10, and 24 - 2B - 3C= L

These equations imply in turn that 4 = 1/3, B = —4/9, and C = 5/27. Substituting these
values into the quadratic expression for our particular solution gives

| 4 5
Pp =§I2—§x+ﬁ.

By Theorem 7, the general solution to the nonhomogeneous equation is

%xz — %x + % [ |

VEYot = et + e+



The Method of Variation of Parameters

Variation of Parameters Procedure
To use the method of vanation of parameters to find a particular solution to the
nonhomogeneous equation

ay” + b+ oy = Gx),

we can work directly with the Equations (4) and (5). It 1s not necessary to re-
derive them. The steps are as follows.

1. Solve the associated homogeneous equation
ay" +by' + ey =0
to find the functions y; and y,.

3. Integrate v;" and 12’ to find the functions vy = vy(x) and 12 = 2(x).
4. Write down the particular solution to nonhomogeneous equation (1) as

Yp = v v

EXAMPLE 6  Find the general solution to the equation

V' +y=tanx

The general solution 1s

y=cjcosx + c;sinx — (cosx) In|secx + tanx|






