1) Generate a vector of the even numbers between 5 and 50.

2) Let \(x = [3\ 5\ 4\ 2\ 8\ 9] \).
 a) Add 20 to each element.
 b) Subtract 2 from each element.
 c) Add 3 to just the odd-index elements.
 d) Compute the square root of each element.
 e) Compute the square of each element.

3) Let \(x = [3\ 2\ 6\ 8] \) and \(y = [4\ 1\ 3\ 5] \)
 a) Add the sum of the elements in \(x \) to \(y \).
 b) Divide each element of \(y \) by the corresponding element in \(x \).
 c) Multiply each element in \(x \) by the corresponding element in \(y \).

4) Evaluate the following MATLAB expressions:
 a) \(2 / 2 \ast 3 \)
 b) \(6 - 2 / 5 + 7 ^ 2 - 1 \)
 c) \(10 / 2 \backslash 5 - 3 + 2 \ast 4 \)
 d) \(3 ^ 2 / 4 \)
 e) \(3 \ast 2 ^ 2 \)
 f) \(2 + \text{round}(6 / 9 + 3 \ast 2) / 2 - 3 \)
 g) \(2 + \text{fix}(6 / 9 + 3 \ast 2) / 2 - 3 \)

5) Create a vector \(x \) with the elements:
 a) 2, 4, 6, 8.
 b) 10, 8, 6, 4, 2, 0, -2, -4.
 c) 1, 1/2, 1/3, 1/4, 1/5.
 d) 0, 1/2, 2/3, 3/4, 4/5.

6) Given a vector, \(t= 1:0.2:2 \), write down the MATLAB expressions that will correctly compute the following:
 a) \(\ln(2 + t + t^2) \)
 b) \(e^{[1 + \cos(3t)]} \)
 c) \(\cos^2(t) + \sin^2(t) \)
 d) \(\tan^{-1}(1) \)
 e) \(\cot(t) \)
 f) \(\sec^2(t) + \cot(t) – 1 \)

7) Plot the following functions over the interval \(0 < x < 4 \) :
 a) \(x^3 \)
 b) \(e^x \)
 c) \(e^{x^2} \)

8) Given \(x = [3\ 1\ 5\ 7\ 9\ 2\ 6] \), evaluate the output of the following commands:
 a) \(x(3) \)
 b) \(x(1:7) \)
 c) \(x(1:end) \)
 d) \(x(1:end-1) \)
 e) \(x(6:-2:1) \)
 f) \(x([1\ 6\ 2\ 1\ 1]) \)
 g) \(\text{sum}(x) \)
9) Given the array \(A = [2 \ 4 \ 1 \ ; \ 6 \ 7 \ 2 \ ; \ 3 \ 5 \ 9] \), provide the commands needed to:
 a) Assign the first row of \(A \) to a vector called \(x_1 \).
 b) Assign the last 2 rows of \(A \) to an array called \(y \).
 c) Compute the sum over the columns of \(A \).
 d) Compute the sum over the rows of \(A \).

10) Given the arrays \(x = [1 \ 4 \ 8] \), \(y = [2 \ 1 \ 5] \) and \(A = [3 \ 1 \ 6 \ ; \ 5 \ 2 \ 7] \), determine which of the following statements will correctly execute and provide the result:
 a) \(x + y \)
 b) \(x + A \)
 c) \(x' + y \)
 d) \(A - [x' \ y'] \)
 e) \([x ; y'] \)
 f) \([x ; y] \)
 g) \(A - 3 \)

11) Given the array \(A = [2 \ 7 \ 9 \ 7 \ ; \ 3 \ 1 \ 5 \ 6 \ ; \ 8 \ 1 \ 2 \ 5] \), explain the results of the following commands:
 a) \(A' \)
 b) \(A(:,[1 \ 4]) \)
 c) \(A([2 \ 3],[3 \ 1]) \)
 d) \(A(:) \)
 e) \([A(end,:)]) \)
 f) \(A(1:3,:) \)
 g) \([A ; A(1:2,:)] \)
 h) \(\text{sum}(A) \)
 i) \(\text{sum}(A') \)
 j) \(\text{sum}(A,2) \)
 k) \([[A ; \text{sum}(A)] [\text{sum}(A,2) ; \text{sum}(A(:))]] \)

12) Given the array \(A = [2 \ 7 \ 9 \ 7 \ ; \ 3 \ 1 \ 5 \ 6 \ ; \ 8 \ 1 \ 2 \ 5] \), provide the command that will:
 a) assign the even-numbered columns of \(A \) to an array called \(B \)
 b) assign the odd-numbered rows to an array called \(C \)
 c) convert \(A \) into a 4-by-3 array
 d) compute the reciprocal of each element of \(A \)
 e) compute the square-root of each element of \(A \)

13) Given that \(x = [1 \ 5 \ 2 \ 8 \ 9 \ 0 \ 1] \) and \(y = [5 \ 2 \ 2 \ 6 \ 0 \ 0 \ 2] \), find the results of the following commands:
 a) \(x > y \)
 b) \(y < x \)
 c) \(x == y \)
 d) \(x <= y \)
 e) \(y >= x \)
 f) \(x | y \)
 g) \(x & y \)
 h) \(x & (~y) \)
 i) \((x > y) | (y < x) \)
 j) \((x > y) & (y < x) \)
14) Given \(x = 1:10 \) and \(y = [3 1 5 6 8 2 9 4 7 0] \), find the results of the following commands:
 a) \((x > 3) \& (x < 8)\)
 b) \(x(x > 5)\)
 c) \(y(x <= 4)\)
 d) \(x(~ (x < 2) \mid (x >= 8) ~)\)
 e) \(y(~ (x < 2) \mid (x >= 8) ~)\)
 f) \(x(y < 0)\)

15) Write the MATLAB commands of \(\text{sign}(x) \) function with different name (like \textit{numbersign}(x)).

16) Write a script to evaluate the value of \(T \) according to the following conditions:

\[
T = \begin{cases}
200 & \text{when } y \text{ is below } 10,000 \\
200 + 0.1(y - 10,000) & \text{when } y \text{ is between } 10,000 \text{ and } 20,000 \\
1,200 + 0.15(y - 20,000) & \text{when } y \text{ is between } 20,000 \text{ and } 50,000 \\
5,700 + 0.25(y - 50,000) & \text{when } y \text{ is above } 50,000
\end{cases}
\]

17) Given the vector \(x = [1 8 3 9 0 1] \), create a short set of commands that will:
 (using loop statements)
 a) Add up the values of the elements.
 b) Computes the sine of the given \(x \)-values.

18) Create an \(M \)-by-\(N \) array of random numbers. Move through the array, element by element, and set any value that is less than 0.2 to 0 and any value that is greater than (or equal to) 0.2 to 1.

19) Given \(x = [4 1 6] \) and \(y = [6 2 7] \), write the script to compute the following arrays:
 a) \(a_{ij} = x_i y_j \)
 b) \(b_{ij} = x_i/y_j \)
 c) \(c_i = x_i y_i \), then add up the elements of \(c \).
 d) \(d_{ij} = x_i/(2 + x_i + y_j) \)
 e) \(e_{ij} = \text{reciprocal of the lesser of } x_i \text{ and } y_j \)

20) Write a script that will use the random-number generator \textit{rand} to determine the following:
 a) The number of random numbers it takes to add up to 20 (or more).
 b) The number of random numbers it takes before a number between 0.8 and 0.85 occurs.
 c) The number of random numbers it takes before the mean of those number is greater than 0.5 .

21) Given \(x=[7 6 1 2 0 -1 4 3 -2 0] \) what are the commands that will execute the following operations:
 a) Sets the negative values of \(x \) to zero.
 b) Extract the values of \(x \) greater than 3 in a vector \(y \).
 c) Add 3 to the values of \(x \) that are even.
 d) Set the values of \(x \) that are less than the mean to zero.
 e) Set the values of \(x \) that is greater than the mean to their difference with the mean.
22) Write a script that will calculate the current in each branch of the following circuit:

![Circuit Diagram]

23) Write a script that will calculate Z_T and I_S of the following network:

![Network Diagram]

24) Write a script that will find the roots of x for the polynomial

$2x^4 + 3x^3 - 10x^2 - 11x + 22$

25) Write down the commands for each of the following operations:
 a) Create a row vector x of 5 equally spaced elements between 2 and 3.
 b) Add 1 to the second element.
 c) Create a second row vector y of same dimension with elements equal to the successive even integers starting with 4.
 d) Create the matrix A, whose first row is equal to x, whose second row is a line of ones, and whose third row is equal to y.
 e) Define a row vector z, whose elements are equal to the mean value of the columns of A.
 f) Define a column vector zz, whose elements are the sum of the elements in each rows of A.

26) Create a vector a with elements

$$a_n = \frac{(-1)^n \pi^{2n}}{(2n)!} \quad 1 \leq n \leq 100$$

(You can use the MATLAB function `factorial(n)` to compute $n!$).

27)
1) \(A = (6:2:50) \)

2) \(x = [3 \ 5 \ 4 \ 2 \ 8 \ 9] \)
 a) \(A = x + 20 \)
 b) \(A = x - 2 \)
 c) \(A = x(1:2:end) + 3 \)
 d) \(A = \sqrt{x} \)
 e) \(A = x.^2 \)

3) \(x = [3 \ 2 \ 6 \ 8], \ y = [4 \ 1 \ 3 \ 5] \)
 a) \(A = y + \text{sum}(x) \)
 b) \(A = x.^y \)
 c) \(A = y ./ x \)
 d) \(A = x .* y \)

4) \(\text{Ans} = \)
 a) 3
 b) 53.6000
 c) 6
 d) 2.2500
 e) 81
 f) 2.5000
 g) 2

5) \(\text{Ans} = \)
 a) \(x = [2:2:8] \)
 b) \(x = [10:-2:-4] \)
 c) \(A = [1:5], \ x = 1 ./ A \)
 d) \(A = [0:4], \ B = [1:5], \ x = A ./ B \)

6) \(t = 1:0.2:2 \)
 a) \(A = \log(2 + t + t.^2) \)
 b) \(A = \exp(t).* (1 + \cos(3*t)) \)
 c) \(A = \cos(t).^2 + \sin(t).^2 \)
 d) \(A = \tan(t) \)
 e) \(A = \cot(t) \)
 f) \(A = \sec(t).^2 + \cot(t) - 1 \)

7) \(x = 0:0.1:4 \)
 a) \(\text{plot}(x, x.^3) \)
 b) \(\text{plot}(x, \exp(x)) \)
 c) \(\text{plot}(x, \exp(x.^2)) \)

8) \(x = [3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6] \)
 a) 5
 b) 3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6
 c) 3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6
 d) 3 \ 1 \ 5 \ 7 \ 9 \ 2
 e) 2 \ 7 \ 1
 f) 3 \ 2 \ 1 \ 3 \ 3
 g) 33

9) \(A = [2 \ 4 \ 1 ; 6 \ 7 \ 2 ; 3 \ 5 \ 9] \)
 a) \(x1 = A(1,:) \)
 b) \(y = A(\text{end-1:end,:}) \)
c) c = sum(A)
d) d = sum(A,2)

10) x = [1 4 8], y = [2 1 5], A = [3 1 6; 5 2 7]
 a) 3 5 13
 b) Not correct.
 c) Not correct.
 d) Not correct.
 e) Not correct.
f) 1 4 8
 2 1 5
g) 0 -2 3
 2 -1 4

11) A = [2 7 9 7; 3 1 5 6; 8 1 2 5]
 a) 2 3 8
 7 1 1
 9 5 2
 7 6 5
 b) 2 7
 3 6
 8 5
c) 5 3
 2 8
d) 2
 3
 8
 7
 1
 1
 9
 5
 2
 7
 6
 5
e) 8 1 2 5
 2 7 9 7
 3 1 5 6
 8 1 2 5
f) 2 7 9 7
 3 1 5 6
 8 1 2 5
g) 3 1 5 6
 8 1 2 5
 2 7 9 7
 3 1 5 6
h) 13 9 16 18
i) 25 15 16
j) 25
 15
 16
k) 2 7 9 7 25
 3 1 5 6 15
 8 1 2 5 16
 13 9 16 18 56
12) \(A = \begin{bmatrix} 2 & 7 & 9 & 7; & 3 & 1 & 5 & 6; & 8 & 1 & 2 & 5 \end{bmatrix} \)
 a) \(B = A(:,2:2:end) \)
 b) \(C = A(1:2:end,:) \)
 c) \(c = A' \)
 d) \(d = 1./A \)
 e) \(e = \text{sqrt}(A) \)

13) \(x = [1 5 2 8 9 0 1] , y = [5 2 2 6 0 0 2] \)
 a) \(0 1 0 1 1 0 0 \)
 b) \(0 0 1 0 0 0 1 \)
 c) \(0 1 0 0 0 0 1 \)
 d) \(1 0 1 0 0 1 1 \)
 e) \(1 1 1 1 0 1 1 \)
 f) \(1 1 1 1 0 1 1 \)
 g) \(1 1 1 1 0 1 1 \)
 h) \(0 0 1 0 0 0 1 \)
 i) \(0 1 0 1 0 0 0 \)
 j) \(0 1 0 1 1 0 0 \)

14) \(x = 1:10 , y = [3 1 5 6 8 2 9 4 7 0] \)
 a) \(0 0 0 1 1 1 1 0 0 0 \)
 b) \(6 7 8 9 10 \)
 c) \(3 1 5 6 \)
 d) \(1 8 9 10 \)
 e) \(3 4 7 0 \)
 f) \(\text{Empty matrix: 1-by-0} \)

15) The file saved as numbersign.m
 function \(f = \text{numbersign}(x) \)
 if \(x > 0 \)
 \(f = 1; \)
 elseif \(x == 0 \)
 \(f = 0; \)
 else
 \(f = -1; \)
 end

16) clc
clear
y=input('input the value of y =');
if \(y<10000 \)
 \(T=200; \)
elseif \((y>=10000) \) \& \((y<20000) \)
 \(T=200 + 0.1*(y - 10000) \)
elseif \((y>=20000) \) \& \((y<50000) \)
 \(T=1200 + 0.15*(y - 20000) \)
else
 \(T=5700 + 0.25*(y - 50000) \)
end
T
17)
 a) clc
 clear
 x = [1 8 3 9 0 1];
 sum=0;
 for i=1:6
 sum=sum+x(i);
 end
 sum

 b) clc
 clear
 x = [1 8 3 9 0 1];
 sum=0;
 for i=1:6
 sine(i)=sin(x(i));
 end
 sine

18)
 clc
 clear
 M=input('input the number of rows =');
 N=input('input the number of columns =');
 for i=1:M
 for j=1:N
 A(i,j)=rand;
 end
 end
 for i=1:M
 for j=1:N
 if A(i,j)<0.2
 A(i,j)=0;
 else
 A(i,j)=1;
 end
 end
 end
 A

19)
 clc
 clear
 x = [4 1 6];y = [6 2 7];
 N = length(x);
 for j = 1:N
 c(j) = x(j)*y(j);
 for k = 1:N
 a(j,k) = x(j)*y(k);
 b(j,k) = x(j)/y(k);
 d(j,k) = x(j)/(2 + x(j) + y(k));
 e(j,k) = 1/min(x(j),y(k));
 end
 end
 c = sum(c);
20)

a)
```matlab
clc
clear
sum=0;count=0;
while sum < 20
    sum=sum+rand;
    count=count+1;
end
disp(['the number of random numbers =',int2str(count)])
```

b)
```matlab
clc
clear
count=0;
while 1
    x=rand;
    if (x>0.8) & (x<0.85)
        break
    end
    count=count+1;
end
disp(['the number of random numbers =',int2str(count)])
```

c)
```matlab
clc
clear
count=0;average=0;sum=0;
while average <= 0.5
    sum=sum+rand;
    count=count+1;
    average=sum/count;
end
disp(['the number of random numbers =',int2str(count)])
```

21)

a)
```matlab
x=[7 6 1 2 0 -1 4 3 -2 0];
n=length(x);
for i=1:n
    if x(i)<0
        x(i)=0;
    end
end
x
```

b)
```matlab
x=[7 6 1 2 0 -1 4 3 -2 0];
n=length(x);ind=1;
for i=1:n
    if x(i)>3
        y(ind)=x(i);
        ind=ind+1;
    end
end
y
```
c) \[x = \begin{bmatrix} 7 & 6 & 1 & 2 & 0 & -1 & 4 & 3 & -2 & 0 \end{bmatrix}; \]
\[n = \text{length}(x); \]
\[\text{for } i = 1:n \]
\[\quad \text{if } \text{mod}(x(i),2) == 0 \]
\[\quad \quad x(i) = x(i) + 3; \]
\[\quad \text{end} \]
\[\text{end} \]
\[x \]

d) \[x = \begin{bmatrix} 7 & 6 & 1 & 2 & 0 & -1 & 4 & 3 & -2 & 0 \end{bmatrix}; \]
\[n = \text{length}(x); \]
\[\text{for } i = 1:n \]
\[\quad \text{if } x(i) < \text{mean}(x) \]
\[\quad \quad x(i) = 0; \]
\[\quad \text{end} \]
\[\text{end} \]
\[x \]
e) \[x = \begin{bmatrix} 7 & 6 & 1 & 2 & 0 & -1 & 4 & 3 & -2 & 0 \end{bmatrix}; \]
\[n = \text{length}(x); \]
\[\text{for } i = 1:n \]
\[\quad \text{if } x(i) > \text{mean}(x) \]
\[\quad \quad x(i) = x(i) - \text{mean}(x); \]
\[\quad \text{end} \]
\[\text{end} \]
\[x \]

22) By using mesh analysis
\[2I_1 - I_2 + 0 = -2 \]
\[6I_1 - I_1 - 3I_3 = 4 \]
\[7I_1 - 3I_2 + 0 = 2 \]
Rearrange the equations
\[2I_1 - I_2 + 0 = -2 \]
\[-I_1 + 6I_2 - 3I_3 = 4 \]
\[0 - 3I_2 + 7I_3 = 2 \]
\[
\text{clc}
\text{clear}
\text{A} = \begin{bmatrix} 2 & -1 & 0 \; -1 & 6 & -3 \; 0 & -3 & 7 \end{bmatrix}; \text{B} = \begin{bmatrix} -2 \; 4 \; 2 \end{bmatrix};
\text{I} = \text{A} \backslash \text{B};
\text{I1} = \text{I}(1);
\text{I2} = \text{I}(2);
\text{I3} = \text{I}(3)\]

23) \[
\text{clc}
\text{clear}
\text{Xl} = 8; \text{R} = 5; \text{Xc} = 12; \text{e} = 20 \times \text{exp}(i \times (20 \times \text{pi}/180));
\text{Z1} = \text{complex}(0, \text{Xl});
\text{Z2} = \text{complex}(\text{R}, -\text{Xc});
\text{Zt} = \text{Z1} \times \text{Z2} / (\text{Z1} + \text{Z2})
\text{Is} = \text{e} / \text{Zt} \]
24)
```matlab
clc
clear
p = [1, 2, -13, -14, 24];
x = roots(p)
```

25)
- a) `x=[2:1/4:3]`
- b) `x(2)=x(2)+1`
- c) `y=[4:2:12]`
- d) `A=[x; ones(1,5); y]`
- e) `z=mean(A)`
- f) `zz=sum(A,2)`

26)
```matlab
clc
clear
for n=1:100
    a(n)=(-1)^n*pi^(2*n)/factorial(2*n);
end
```