2nd class

Advance Mathematics and numerical analysis

الرياضيات المتقدمة والتحليل العددي

استاذ المادة: م.د. عبدالمحسن جابر عبدالحسين
CHAPTER ONE

Definition

1- Partial Derivative

If f is a function of the variables x, and y in the region xy plane the Partial Derivative of f with respect to (w. r. to) x, at point (x, y) is

\[\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \]

And (w. r. to) y at point (x, y) is

\[\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \]

To find \(\frac{\partial f}{\partial x} \) is simply regards y as constant in f (x, y) and Differential (w. r to) x is written in form

\[\frac{\partial f}{\partial x} = \frac{\partial z}{\partial x} = \frac{\partial F}{\partial x} \]

or

\[D_x f = Z_x = F_x \]

Using same way to find \(\frac{\partial f}{\partial y} \) is simply regards x as constant in f (x, y) and Differential (w. r. to) y is written in form

\[\frac{\partial f}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial F}{\partial y} \]

or

\[D_y f = Z_y = F_y \]

Since a partial derivative of function twice variables to obtain second partial derivative as

1- \(\frac{\partial^2 f}{\partial x^2} = f_{xx} \)
2- \(\frac{\partial^2 f}{\partial y^2} = f_{yy} \)
3- \(\frac{\partial^2 f}{\partial x \partial x} = \frac{\partial^2 f}{\partial x^2} = f_{xx} \)
4- \(\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y^2} = f_{yy} \)
5- \(\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y} = f_{xy} \)
6- \(\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial y \partial x} = f_{yx} \)

Note I

It is easy to extend the partial derivative of function of three variables or more

\[\frac{\partial}{\partial x} (\frac{\partial^2 f}{\partial y \partial x}) = \frac{\partial^3 f}{\partial x \partial y} = f_{x y x} \]

Theorem

If f (x, y) and it's partial derivatives \(f_x, f_y, f_{yx}, \) and \(f_{xy} \) are define in region containing a point (a, b) and are all continuous at (a, b), then \(f_{yx} = f_{xy} \).
Example 1
Let \(f(x, y) = x^2 - y^2 + xy + 7 \).
Then find \(f_x, f_y, f_{xx}, \) and \(f_{xy} \)

Solution
\[
\begin{align*}
f_x &= 2x + y \\
f_y &= -2y + x \\
f_{xy} &= 1.
\end{align*}
\]

Problem
1- Let \(f(x, y) = e^{-x} \sin y + e^y \cos x + 8 \)
Then find \(f_x, f_y \)
2- Find \(f_x \) and \(f_y \) at point \((1,3/2)\) if \(f = \sqrt{4-x^2+y^2} \)
3- If \(f(x, y) = x e^y - \sin(x/y) + x^3 y^2 \).
Then find \(f_x^2, f_y, f_{xx}, f_{yy} \) and \(f_{xy} \)
4- If \(U = x^2 y^2 + \arctan(xz) \), then find \(U_x, U_y \) and \(U_z \).
5- If \(V = x^2 + y^2 + z^2 + \log(xz) \), then find \(V_x, V_y, V_z, V_{xy} \) and \(V_{zz} \).
6- If \(f = x^y \), then find \(f_x, f_y \).
7- Prove that \(U_{xy} = U_{yx} \)
If
a- \(U = x \sin y + y \cos x \)
b- \(U = x \log y \)

2- Chain Rule
1- Function of one variables
If \(y = f(x) \), and \(x = x(t), y = y(t) \) then
\[
\frac{\partial y}{\partial t} = \frac{\partial y}{\partial x} \frac{\partial x}{\partial t}
\]
2- Function of two or three variables is
a- If \(Z = f(x, y) \), \(x = x(t), y = y(t) \) then
\[
\frac{\partial Z}{\partial t} = \frac{\partial Z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial Z}{\partial y} \frac{\partial y}{\partial t}
\]
b- If \(Z = f(x, y, w) \), \(x = x(t), y = y(t), w = w(t) \) then
\[
\frac{\partial Z}{\partial t} = \frac{\partial Z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial Z}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial Z}{\partial w} \frac{\partial w}{\partial t}
\]

Example 2
Let \(f(x, y) = e^{xy} \), \(x = r \cos \theta, y = r \sin \theta \)

Find \(f_r \) and \(f_\theta \), in term \(r \) and \(\theta \).

Solution
\[\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \]
\[\frac{\partial f}{\partial x} = ye^{xy} \]
\[\frac{\partial f}{\partial y} = xe^{xy} \]
\[\frac{\partial x}{\partial r} = \cos \theta \]
\[\frac{\partial y}{\partial r} = \sin \theta \]

\[\frac{\partial f}{\partial r} = ye^{xy} \cos \theta + xe^{xy} \sin \theta \]
\[= 2r \sin \theta \cos \theta \ e^{r^2 \cos \theta \cos \theta} \]
\[= 2 \sin \theta \ e^{r^2 \cos \theta \cos \theta}. \]

\[\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \]
\[\frac{\partial x}{\partial \theta} = -r \sin \theta \]
\[\frac{\partial y}{\partial \theta} = r \cos \theta \]

\[\frac{\partial f}{\partial \theta} = ye^{xy} (-r \sin \theta) + xe^{xy} (r \cos \theta) \]
\[= -r^2 \sin^2 \theta \ e^{r^2 \cos \theta \cos \theta} + r^2 \cos^2 \theta \ e^{r^2 \cos \theta \cos \theta} \]
\[= r^2 \ e^{r^2 \cos \theta \cos \theta} \cos \theta \ (\cos^2 \theta - \sin^2 \theta) \]
\[= r^2 \cos \theta \ e^{r^2 \cos \theta \cos \theta}. \]

Problem

Find \(f_t \), in the following function

1- \(f(x, y) = x^2 - y^2, x = e^t, y = 2t - 6 \)

2- \(f = x^2 - xy^2, x = \cos t, y = e^t \)

3- \(f = y/x, x = \ln t, y = \cot t \)

4- \(f = e^{xy} \ln(x - y), x = t^3, y = 2t - t^3 \)

5- \(f = \sqrt{x+y}, x = \sin^{-1} t, y = \sin t \)

6- \(f = \frac{x}{x-y}, x = \cosh t, y = \sinh t \)

7- \(f = \sin(x + y - z), x = \sin t, y = e^{t^2}, z = \ln t \)

8- \(f = \tan^{-1} \left(\frac{x}{y} \right), x = e^{t} \cos t, y = e^{t} \sin t \)
9- \(f = \frac{x}{y} \), \(x = e^t \), \(y = 2t - 6 \)

Find \(U_x \), \(U_y \) and \(U_z \), in the following function

10- \(U = \text{tanh}^{-1}(\frac{r}{s}) \), \(r = x \sin yz \), \(s = x \cos yz \)

11- \(U = \ln(r + s + t) \) if, \(r = xy \), \(s = xz \), \(t = yz \)

3- The Total Differential

The total differential of function \(W = f(x, y, z) \), ..(1)

Is defined to be
\[
\text{dw} = \frac{\partial f}{\partial x} \text{dx} + \frac{\partial f}{\partial y} \text{dy} + \frac{\partial f}{\partial z} \text{dz}
\]

Or
\[
\text{dw} = f_x \text{dx} + f_y \text{dy} + f_z \text{dz}
\]

In general the total differential of function \(W = f(x, y, z, u, \ldots, v) \) is defined by
\[
\text{dw} = f_x \text{dx} + f_y \text{dy} + f_z \text{dz} + f_u \text{du} + \ldots + f_v \text{dv}
\]

where \(x, y, z, u \ldots \) and \(v \) are independent variables.

But if \(x, y \) and \(z \) are not independent variables but are them can selves given by
\(x = x(t) \), \(y = y(t) \), \(z = z(t) \),

then we have
\[
\text{dx} = \frac{\partial x}{\partial t} \text{dt}, \quad \text{dy} = \frac{\partial y}{\partial t} \text{dt}, \quad \text{dz} = \frac{\partial z}{\partial t} \text{dt}.
\]

Or in the form:-
\(x = x(r, s) \), \(y = y(r, s) \), \(z = z(r, s) \).

Then we ha
\[
\begin{align*}
\text{dx} & = \frac{\partial x}{\partial r} \text{dr} + \frac{\partial x}{\partial s} \text{ds} \\
\text{dy} & = \frac{\partial y}{\partial r} \text{dr} + \frac{\partial y}{\partial s} \text{ds} \\
\text{dz} & = \frac{\partial z}{\partial r} \text{dr} + \frac{\partial z}{\partial s} \text{ds}
\end{align*}
\]

Then (1) become in case
\(W = f(x, y, z) = f(x(r, s), \ y(r, s), \ z(r, s)) = f(r, s) \).

Then from (2) and (3) we obtain:-
\[
\text{dw} = \left[\frac{\partial w}{\partial x} \text{dx} + \frac{\partial w}{\partial y} \text{dy} + \frac{\partial w}{\partial z} \text{dz} \right] + \left[\frac{\partial w}{\partial r} \text{dr} + \frac{\partial w}{\partial s} \text{ds} \right]
\]

\[
\text{dw} = \left[\frac{\partial w}{\partial x} \text{dx} + \frac{\partial w}{\partial y} \text{dy} + \frac{\partial w}{\partial z} \text{dz} \right] + \left[\frac{\partial w}{\partial r} \text{dr} + \frac{\partial w}{\partial s} \text{ds} \right]
\]

\[
\text{dw} = \frac{\partial w}{\partial r} \text{dr} + \frac{\partial w}{\partial s} \text{ds} \]
\[=[\frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}] \, dr+ \left[\frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \right] ds \ldots \ldots \text{(4)} \]

Example 3

Find the total differential of function

\[W = x^2 + y^2 + z^2 \] if

\[x = r \cos s, \quad y = r \sin s \text{ and } z = r \]

Solution

\[dw = w_x \, dx + w_y \, dy + w_z \, dz \]

\[dx = \frac{\partial x}{\partial r} \, dr + \frac{\partial x}{\partial s} \, ds, \text{ or} \]

\[dx = x_r \, dr + x_s \, ds = \cos s \, dr - r \sin s \, ds \]

\[dy = y_r \, dr + y_s \, ds = \sin s \, dr + r \cos s \, ds, \]

\[dz = z_r \, dr + z_s \, ds = dr. \]

Now

\[dw = 2x[\cos s \, dr - r \sin s \, ds] + 2y[\sin s \, dr + r \cos s \, ds] + 2r \, dr. \]

\[dw = 2r \cos^2 s \, dr - r \sin s \, ds \]

\[dw = 2r \sin^2 s + r \sin^2 s + r \, dr + 2 \left[-r^2 \sin s \cos s + r \sin s \cos s \right] ds + 2r \, dr, \]

\[dw = 4r \, dr. \]

Problem

If \(U = f(x, y) \) Find \(dU \), in the following:

1. \(U = 2 \ln x + \ln y^2 \) if \(x = e^t, y = e^t \).
2. \(U = \tan^{-1} x + \sqrt{1 - y^2} \) if \(x = t^2, y = t - 1 \).
3. \(U = \sin(x + y) + \cos xy, \) \(x = \pi + 2t, y = \pi - 4t \).
4. \(U = x^2 + y^2 + 6xy, x = 3t - 1, y = 4t - 3 \).
5. \(U = \frac{x}{y}, x = \tanh^{-1} (t), y = \tanh^{-1} \left(\frac{r}{s} \right), r = x \sin yz, s = x \cos yz \).
6. \(U = \ln(r + s + t) \) if \(r = xy, s = x \, z, t = y \, z \).
7. If \(f(x, y) = x \cos y + ye^x \). Prove that \(f_{yx} = f_{xy} \).
8. If \(f(x, y) = \tan^{-1} \left(\frac{x}{y} \right) \). Prove that \(f_{xx} + f_{yy} = 0 \).
9. If \(f(x, y) = e^{-2y} x \cos 2x \). Prove that \(f_{xx} + f_{yy} = 0 \).
11- If \(W = \sin(x + ct) \). Prove that \(W_{tt} = c^2 W_{xx} \).
12- If \(W = \cos(2x + 2ct) \). Prove that \(W_{tt} = c^2 W_{xx} \).
13- If \(W = \ln(2x + 2ct) + \cos(2x + 2ct) \). Prove that \(W_{tt} = c^2 W_{xx} \).
14- If \(W = \tan(x - ct) \). Prove that \(W_{tt} = c^2 W_{xx} \).
CHAPTER TWO
Differential Equations (d.e)

Introduction:-
Definition 1.1
Differential Equations (d.e)
If y is a function of x, where y is called the dependent variable and x is called the independent variable. A differential equation is a relation between x and y which includes at least one derivative of y with respect to (w.r.to) x. Which has two types:-
1- Ordinary d.e.
 If (d.e) involves only a single independent variable this derivatives are called ordinary derivatives, and the equation is called ordinary (d.e).
2- Partial d.e.
 If there are two or more independent variables derivatives are called partial derivatives, and the equation is called partial (d.e).
For example
(a) \(\frac{d^3 y}{dx^3} - 3 \frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} - y = 2e^x \)
(b) \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \)
(c) \(\frac{df}{dx} + x = \sin x \)
(d) \(y'' - 3y' + y = 0 \)
The Order of (d.e)
Is that the derivative of highest order in the equation for example (a) order 3 (b) order 2 (c) order 1 (d) order 3?

Solution of Differential Equations
Any relation between the variables that occur in (d.e) that satisfies the equation is called a solution or when y and it's derivatives are replace through out by f(x) and it's derivatives for example
Show that \(y = a \cos 2x + b \sin 2x \), of derivative a solution of (d.e)
\(y'' + 4y = 0 \) ………………………………………………………………………… (1),
Where a and b are arbitrary constant.
Solution
Since \(y = a \cos 2x + b \sin 2x \),
\(y' = -2a \sin 2x + 2b \cos 2x \)
\(y'' = -4a \cos 2x - 4b \sin 2x \), put y and \(y'' \) in (1)
\(-4a \cos 2x - 4b \sin 2x + 4(a \cos 2x + b \sin 2x) = 0 \)
0 = 0, then this solution called the general solution.

Exercises

Show that each equation is a solution of the indicated (d.e)

1. \(y'' = y' \) where \(y = c_1 + c_2 x + c_3 e^x \)
2. \(x y'' + y' = 0 \) where \(y = c_1 \ln x + c_2 \)
3. \(y'' + 9 y = 4 \cos x \) where \(2y = \cos x \)
4. \(y'' - y = e^{2x} \) where \(y = e^{2x} \)
5. \(y'' = 2y \sec^2 x \) where \(y = \tan x \).

First Order Differential Equations

The first order differential equation take in the form:–

\[M(x, y) \, dx + N(x, y) \, dy = 0 \] \hspace{1cm} (2)

Where \(M \) and \(N \) are functions of \(x \) and \(y \) or both.

To solve this type of (d.e), we consider the following methods:–

1. **Variable Separable**

 Any (d.e) can be put in the form:–

 \[f(x) \, dx + g(x) \, dy = 0, \text{ or } x \text{ and derivative of } x \text{ in term and } y \text{ derivative of } y \]
 in another term.

 This equation called **Variable Separable**, this equation can be solve by take the integral of two sides of this equation

 \[\int f(x) \, dx + \int g(x) \, dy = c, \text{ where } c \text{ is arbitrary constant.} \]

 Example

 Solve \(x \, dy = y \, dx \)

 \[y \, dx - x \, dy = 0 \]

 \((y \, dx - x \, dy = 0) \frac{1}{xy} \),

 \[\frac{dx}{x} - \frac{dy}{y} = 0, \text{ by integral of two sides} \]

 \[\int \frac{dx}{x} - \int \frac{dy}{y} = c \]

 \(\ln x - \ln y = c \),

 \[\ln \frac{x}{y} = c \]

 \[\frac{x}{y} = e^c = c_1 \]

 \(\therefore y = \frac{x}{c_1} \).

Problems

Solve the following differential equations:

1. \(x(2y - 3) \, dx + (x^2 + 1) \, dy = 0 \)
2. \(x^2(y^2 + 1) \, dx + y \sqrt{x^2 + 1} \, dy = 0 \)
3- \(\frac{dy}{dx} = e^{x-y} \)

4- \(\sqrt{xy} \frac{dy}{dx} = 1 \)

5- \(e^y \sec x dx + \cos x dy = 0 \).

2- **Homogeneous Differential Equation** (H.d.e)

The differential equation as form

\[M(x,y) \, dx + N(x,y) \, dy = 0, \]

Where \(M \) and \(N \) are functions of \(x \) and \(y \) is called (H.d.e) if satisfy the condition

\[
\begin{align*}
M(kx, ky) &= k^n M(x, y) \quad \text{Where } k \text{ is constant.} \\
N(kx, ky) &= k^n N(x, y)
\end{align*}
\]

For **example**

1- \((x^2 - y^2) dx + 2xy dy = 0 \)

\(M = x^2 - y^2, \quad N = 2xy \)

\[
M(kx, ky) = (kx)^2 - (ky)^2 = k^2 x^2 - k^2 y^2 = k^2 (x^2 - y^2)
\]

\(k^2(M) \)

\[
N(kx, ky) = 2(k^2 xy) = k^2 (2xy)
\]

\(k^2(N) \).

The equation is (H.d.e).

3- Solve \((x-y) dx + xy dy = 0 \)

\(M = x - y, \quad N = xy \)

\[
M(kx, ky) = (kx) - (ky) = k(x - y)
\]

\(k(M) \)

\[
N(kx, ky) = k^2 (xy)
\]

\(k^2(N) \).

The equation is not (H.d.e).

If the equation is homogeneous we can solve by the following method:-

Put (H.d.e) in the form

\[
\frac{dy}{dx} = f(y/x) \quad \text{................................. (3)}
\]

Let \(v = y/x \) \quad \text{................................. (4)}

Put (4) in (3) \(\Rightarrow \frac{dy}{dx} = f(v) \quad \text{................................. (5)} \)

From (4) \(y = xv \), and

\[
dy = xdv + vdx, \quad \text{divided by } dx
\]
\[\frac{dy}{dx} = x \frac{dv}{dx} + v, \text{ since } \frac{dy}{dx} = f(v) \text{ from (5)} \]
\[f(v) = x \frac{dv}{dx} + v \quad \Rightarrow \quad f(v) - v = x \frac{dv}{dx} \]
\[(f(v) - v)dx = xdv \quad \Rightarrow \quad \frac{dv}{f(v) - v} = \frac{dx}{x} \]

\[\frac{dx}{x} + \frac{dv}{v - f(v)} = 0. \text{ Or} \]

\[\frac{dx}{x} - \frac{dv}{f(v) - v} = 0 \]

After solving replace \(v \) by \(y/x \).

Example

Solve \((x^2 + y^2) \, dx + 2xy \, dy = 0 \)

Solution

Since this equation (H.d.e). Now
\[2xydy = -(x^2 + y^2)dx, \]
\[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}, \quad \text{put } y = xv \]
\[\frac{dy}{dx} = \frac{x^2 + x^2v^2}{2x(xv)} = \frac{1 + v^2}{2v} \]
\[\therefore f(v) = \frac{1 + v^2}{2v}, \]
\[\frac{dx}{x} + \frac{dv}{v - f(v)} = 0, \]
\[\frac{dx}{x} + \frac{dv}{v + \frac{1 + v^2}{2v}} = 0, \]
\[\frac{dx}{x} + \frac{2vdv}{1 + 3v^2} = 0, \text{ by integral both sides} \]
\[\ln x + \frac{1}{2} \ln(1 + 3v^2) = c, \]
\[\ln x + \frac{1}{3} \ln(1 + 3y^2/x^2) = c \]
\[\therefore \ln x \sqrt[3]{1 + \frac{3y^2}{x^2}} = c, \]
\[\sqrt[3]{x^2 + 3y^2} = c, \text{ where } c_1 = e^c \]

Problems

Solve the following differential equations:-

1. \(2xydx -(xy+x^2)dy = 0 \)
2. \((x^2 + 2y^2 + 3xy)dx + x(x-2y)dy = 0 \)
(3) \((12x^2y - 4y^3)dx + x(3y^2 - 6x^2)dy = 0\)
(4) \((xe^{y/x} - ye^{y/x})dx + xe^{y/x}dy = 0\)
(5) \((3x + xe^{y/x} - ye^{y/x})dx + xe^{y/x}dy = 0\)

3- Exact Differential Equation

The differential equation as form
\[M(x,y) \, dx + N(x,y) \, dy = 0 \]...(7)
There is function
\[f(x,y) = c \]...(8),
Which a solution of (7).
\[df(x,y) = 0 \]...(9).
From total partial differential equation
\[df(x,y) = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy \]...(10).
From 7, 8, 9 and 10,
\[\frac{\partial f}{\partial x} = M \]...(11)
\[\frac{\partial f}{\partial y} = N \]...(12).

Now
\[\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial M}{\partial y}, \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial N}{\partial x}, \]
Since \(\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}\)
\[\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \]
Which condition of exact?
To solve equation (7) we must find \(f\) which the solution of equation (7).
\[\frac{\partial f}{\partial x} = M \] from (11),
\[\frac{\partial f}{\partial y} = N \] from (11),
\[f = \int M \, \partial x + A(y) \]...(13),
Where \(A(y)\) is function of \(y\).

Example
Solve the following differential equation
\[\frac{dy}{dx} = \frac{xy^2 - 1}{1 - x^2 y} \]
Solution
\[(1 - x^2 y)dy - (xy^2 - 1)dx = 0, \]
\[N = 1 - x^2 y, \quad M = 1 - xy^2, \]
\[\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = -2xy, \]
\[\frac{\partial f}{\partial x} = M, \]
\[f = \int M \, \partial x + A(y) = \int (1 - xy^2) \, \partial x + A(y) \]
\[f = \frac{(x - (x^2 y^2))/2 + A(y)}{2} \cdots \cdots (*) \]

We must find \(A(y) \),

\[\frac{\partial f}{\partial y} = -x^2 y + A'(y) = N = x^2 y \]

\[: \quad A'(y) = 1, \]

\[A(y) = y + c \quad \text{put in (*)} \]

\[F = \frac{(x - (x^2 y^2))/2 + y + c}. \]

Problems

Solve the following differential equations:-

1. \((2x + y)dx + (x + y)dy = 0\)
2. \((3x - y)dx - (x - y)dy = 0\)
3. \((\cos x + y)dx + (2y + x)dy = 0\)
4. \((ye^x + y)dx + (x + e^x)dy = 0\)
5. \(\tan y dx + x \sec^2 y dy = 0\).

Integrating Factor

If the equation

\[M \, dx + N \, dy = 0. \]

Is not exact, then there is \(\mu \) such that

\[\mu M \, dx + \mu N \, dy = 0 \cdots \cdots \cdots \cdots \cdots (*) \]

Is exact then

\[\frac{\partial (\mu M)}{\partial y} = \frac{\partial (\mu N)}{\partial x}. \]

To find \(\mu \) (\(\mu \) is called integrating factor).

Theorem I

\[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = f(x) \text{ (function of } x, \text{ or constant).} \]

Then \(\mu = e^{\int f(x) \, dx} \).

\[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = g(y) \text{ (function of } y, \text{ or constant).} \]

Then \(\mu = e^{\int g(y) \, dx} \).

(iii) If \(\mu \) is function of \(x \) and \(y \), then there is no general method to find \(\mu \) (integrating factor).

Example

Solve the following differential equation

\[ydx + (3 + 3x - y)dy = 0 \]

Solution

\[M = y, \quad N = 3 + 3x - y. \]

\[M_y = 1 \neq N_x = 3, \text{ not exact} \]
\[\frac{N_x - M_y}{M} = \frac{3 - 1}{2} = \frac{2}{y}, \text{is function of } y \]

Then \(\mu = e^{\int g(y) dy} \)

\[\mu = e^{\int_{y_0}^{y} 2 \, dx} = e^{2 \ln y} = y^2 \]

(ydx + (3 + 3x - y)dy = 0) \(y^2 \)

\[y^3dx + (3y^2 + 3x y^2 - y^3)dy = 0 \]

M = \(y^3 \), N = \(3y^2 + 3x y^2 - y^3 \).

\[M_y = 3y^2 = N_x = 3y^2 \text{ exact} \]

\[\frac{\partial f}{\partial x} = M, \]

\[f = \int M \, dx + A(y) = \int (y^3) \, dx + A(y) \]

\[f = y^3x + A(y) \ldots \ldots \ldots \ldots \ldots \ldots \ldots (*) \]

We must find A(y).

\[\frac{\partial f}{\partial y} = 3xy^2 + A'(y) = N = 3y^2 + 3x y^2 - y^3 \]

\[\therefore A'(y) = 3y^2 - y^3, \]

A(y) = \(y^2 - y^4/4 + c \) put in (*)

f = \(y^3x + y^3 - y^4/4 + c \).

Example

Solve the following differential equation

\[\frac{dy}{dx} = x - y \]

Solution

\[dy = (x - y)dx \]

\((x - y)dx - dy = 0 \)

M = x - y, N = -1.

\(M_y = -1 \neq N_x = 0, \text{ not exact} \)

\[\frac{M_y - N_x}{N} = \frac{-1 - 0}{-1} = 1, \text{is function of } x \]

Then \(\mu = e^{\int f(x)dx} = e^{\int \alpha dx} = e^x \)

\(((x - y) dx - dy = 0) \ e^x \)

\(e^x (x - y)dx - e^x dy = 0 \)

M = \(xe^x - y e^x \), N = \(-e^x \).

\(M_y = -e^x = N_x = -e^x \text{ exact} \)

\[\frac{\partial f}{\partial x} = M, \]

\[f = \int M \, dx + A(y) = \int (xe^x - y e^x) \, dx + A(y) \]

\[f = xe^x - e^x - y e^x + A(y) \ldots \ldots \ldots \ldots \ldots \ldots \ldots (*) \]

We must find A(y),

\[\frac{\partial f}{\partial y} = -e^x + A'(y) = N = -e^x \]

\[\therefore A'(y) = 0, \]

A(y) = c put in (*)

f = \(xe^x - e^x - y e^x + c \).
4- First – Order Linear Differential Equation

If the equation as form:-

\[\frac{dy}{dx} + P(x) y = Q(x) \]

(15)

Where P and Q are functions of \(x\).

To solve equation (15), we must find \(I\) where

\[I = e^{\int P(x) dx} \]

\(I \) is integrating factor.

Now multiple both sides of (15) by \(I\)

\[dy + Py dx = Q dx \]

(15)

\[e^{\int P(x) dx} \{ dy + Py dx = Q dx \} \]

\[e^{\int P(x) dx} \{ dy + e^{\int P(x) dx} Py dx = e^{\int P(x) dx} Q dx \} \]

\[d \{ ye^{\int P(x) dx} \} = Q e^{\int P(x) dx} dx \]

(16)

by integrate (16)

\[ye^{\int P(x) dx} = \int Q e^{\int P(x) dx} dx + c, \]

Which the solution of (15), or the solution is

\[Iy = \int IQ dx + c \]

Example

Solve the following differential equation

\[\frac{dy}{dx} + \frac{y}{x} = 2 \]

Sol

Since \(P = \frac{1}{x}, \ Q = 2\)

\[I = e^{\int P(x) dx} = e^{\int \frac{1}{x} dx} = e^{\ln x} = x. \]

The solution

\[Iy = \int IQ dx + c \]

\[xy = [2x \ dx] + c, \]

\[xy = x^2 + c \]

\[y = x + c/x \]

Problems

Solve the following differential equations:-

1. \(y' + 2y = e^x \)
2. \(xy' + 3y = x^2 \)
3. \(y' + y\cot x = \cos x \)
4. \(x \ y' + 2y = x^2 - x + 1 \)
5. \(y' - y \tan x = 1 \)

4.1 The Bernoulli Equation

The equation

\[\frac{dy}{dx} + P(x) y = Q(x) y^n \]

(\#), if \(n \neq 1\).

Is similar to L-equation is called Bernoulli Equation.

We shall show how transform this equation to linear equation. In fact we must reduce this equation to linear, product (\#) by \((y^n)\) or
\[
\left[\frac{dy}{dx} + P(x) y = Q(x) \right] y^{-n}
\]

\[
\frac{dy}{dx} y^{-n} + P y^{1-n} = Q \quad \text{................(**)}. \]

Let \(w = y^{1-n} \Rightarrow \frac{dw}{dx} = (1-n) y^{-n} \frac{dy}{dx} \) or

\[
\frac{dw}{1-n} = y^{-n} \frac{dy}{dx} \quad \text{put in (**)}
\]

\[
\frac{dw}{(1-n)dx} + P y^{1-n} = Q, \quad \text{or}
\]

\[
\frac{dw}{dx} + (1-n)P w = (1-n) Q
\]

\textbf{Example}

Solve the following differential equation

\[
\frac{dy}{dx} + \frac{y}{x} = y^2
\]

\textbf{Sol}

\[
\left[\frac{dy}{dx} + \frac{y}{x} = y^2 \right] y^{-2}
\]

\[
\frac{dy}{dx} y^{-2} + \frac{y^{-1}}{x} = 1 \quad \text{.........(#)},
\]

Let \(w = y^{-1} \Rightarrow \frac{dw}{dx} = -y^{-2} \frac{dy}{dx} \)

\[-\frac{dw}{dx} = y^{-2} \frac{dy}{dx}, \text{ put in (#)}
\]

\[
-\frac{dw}{dx} + \frac{w}{x} = 1
\]

\[
\frac{dw}{dx} - \frac{w}{x} = -1.
\]

\[
P = -\frac{1}{x}, \quad Q = -1,
\]

\[
I = e^{\int pdx} = e^{\int dx/x} = e^{-\ln x} = \frac{1}{x}.
\]

The solution

\[
Iw = \int IQ \; dx + c,
\]

\[
\frac{w}{x} = \int \frac{1}{x} \; dx + c,
\]
\[\frac{w}{x} = - \ln x + c, \] Since \(w = y^{-1} = \frac{1}{y} \)
\[\frac{1}{xy} = - \ln x + c, \]
\[y = \frac{1}{x(c - \ln x)}. \]

Problems

Solve the following differential equations:-

1. \(y' - \frac{2y}{x} = 4x y^2 \)
2. \(y' + \frac{y}{x} = x y^2 \)
3. \(y' + \frac{y}{x} = y^3 e^{2x} \sin x \)
4. \(y' + \frac{2y}{x} = 5 y^2/x^2 \)
5. \(x y' + y = y^2 \).

Second – Order Differential Equation

Special Types

Certain types of second order differential equation such that

\[F(x, y, \frac{dy}{dx}, \frac{d^2 y}{dx^2}) \]

Can be reduced to first order equations by a suitable of variables:-

Type I

Equation with dependent variable when equation as form

\[F(x, \frac{dy}{dx}, \frac{d^2 y}{dx^2}) \]

It can be reduced to first order equation by suppose that:-

\[p = \frac{dy}{dx}, \quad \frac{d^2 y}{dx^2} = \frac{dp}{dx} \]

Then equation (18) takes the form

\[F(x, p, \frac{dp}{dx}) = 0, \]

Which is of the first order in p, if this can be solved for p as function of x says?

\[p = q(x, c_1). \]

Then y can be found from one additional integration

\[y = \int \left(\frac{dy}{dx} \right) dx + c = \int p \, dx + c = \int q(x, c_1) \, dx + c. \]

Type II

Equation with independent variable when equation (17) does not contain x explicit but has the form
\[F(y, \frac{dy}{dx}, \frac{d^2y}{dx^2}) = 0 \] \hspace{1cm} (19)

The substitution to use are:

\[p = \frac{dy}{dx}, \quad \frac{d^2y}{dx^2} = \frac{dp}{dx} \cdot \frac{dy}{dx} = \frac{dp}{dy} p \]

The equation (19) becomes

\[F(y, p, \frac{dp}{dx}) = 0, \]

which is of the first order in \(p \). Which solution gives \(p \) in terms of \(y \), and then further integration gives the solution of equation (19).

Example 1

Solve the following differential equation

\[\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0 \] \hspace{1cm} (*)

Let \(p = \frac{dy}{dx} \), \(\frac{d^2y}{dx^2} = \frac{dp}{dy} p \), put in (*)

\[\frac{dp}{dy} p + p = 0, \quad \frac{dp}{dy} + 1 = 0, \]

\[p + dy = 0. \] by integration

\[p + y = c_1 \]

\[\frac{dy}{dx} = c_1 - y \]

\[\frac{dy}{c_1 - y} = dx \Rightarrow -\ln(c_1 - y) = x + c_2 \]

\[\ln(c_1 - y) = -x + c_2 \Rightarrow c_1 - y = e^{-x + c_1} = ce^{-x} \]

\[y = c_1 - ce^{-x} \]

Example 2

Solve the following differential equation

\[X^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 1 \]

\[\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} = \frac{1}{x^2} \] \hspace{1cm} (**) \]

Let \(p = \frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} = \frac{dp}{dx} \), put in (**)
\[\frac{dp}{dx} + \frac{1}{x} p = 1/x^2 \], which linear in \(p \),

\[I = e^{\int pdx} = e^{\int dx/x} = x. \]

\[I p = \int IQ \ dx + c \Rightarrow I p = \int x(1/x^2) \ dx + c = \ln x + c \]

\[\therefore xp = \ln x + c \]

\[P = (\ln x)/x + c/x \]

Let \[\frac{dy}{dx} = (\ln x)/x + c/x \]

\[dy = [(\ln x)/x] \ dx + (c/x) \ dx, \]

\[y = (\ln x)^2/2 + c \ln x + c_1 \]

Problems

Solve the following differential equations:

1. \[y'' + y' = 0 \]
2. \[y'' + y \ y' = 0 \]
3. \[x \ y'' + y' = 0 \]
4. \[y'' - y' = 0 \]
5. \[y'' + w^2 y = 0 \], where \(w \) constant \(\neq 0 \).

Homogeneous-Second – Order (D. E) With Constant Coefficient

Consider linear equation with constant coefficient which in the form:

\[y'' + a y' + b y = 0 \] \hspace{1cm} (20)

where \(a, b \) are constant.

How to solve this equation we shall now find how to determine \(m \) such that

\[y = e^{mx} \] is a solution of (20) then

\[y' = me^{mx} \] and \[y'' = m^2 e^{mx} \], put in (20)

\[m^2 e^{mx} + a me^{mx} + be^{mx} = 0 \]

since \[e^{mx} \neq 0 \], then

\[m^2 + a m + b = 0 \] \hspace{1cm} (21).

Which called **characteristic equation**.

Then we saw that \(e^{mx} \) is a solution of (20) \(\Leftrightarrow m \) is root of (21).

Note

The general solution of (20), there is three cases:

Case i

If \(m_1 = m_2 \) in equation (21), the solution of (20) (homogeneous equation) is

\[y_h = (c_1 + xc_2) e^{mx} \]

Case ii

If \(m_1 \neq m_2 \) in equation (21), the solution of (20) (homogeneous equation) is

\[y_h = c_1 e^{m_1 x} + c_2 e^{m_2 x} \]
Case iii
If \(m_1 \) and \(m_2 \) roots (\(m = \alpha + i\beta \) where \(i = \sqrt{-1} \)) in equation (21), the solution of (20) (homogeneous equation) is

\[y_h = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) \]

Ex i
Solve \(y'' + 4y' + 4y = 0 \) ...(*)
Sol
let \(y = e^{mx} \), \(y' = me^{mx} \) and \(y'' = m^2 e^{mx} \), put in (*)
\[m^2 e^{mx} + 4 me^{mx} + 4e^{mx} = 0 \]
\[e^{mx} (m^2 + 4 m + 4) = 0, \]
since \(e^{mx} \neq 0 \), then
\[m^2 + 4 m + 4 = 0 \]
Which called characteristic equation?
\((m+2)^2 = 0 \Rightarrow m_1 = m_2 = -2 \), the solution of (*) is
\[y_h = (c_1 + xc_2) e^{-2x} \]

Ex ii
Solve \(y'' + y' - 6y = 0 \) ...(**)
Sol
let \(y = e^{mx} \), \(y' = me^{mx} \) and \(y'' = m^2 e^{mx} \), put in (*)
\[m^2 e^{mx} + me^{mx} - 6e^{mx} = 0 \]
\[e^{mx} (m^2 + m-6) = 0, \]
since \(e^{mx} \neq 0 \), then
\[m^2 + m - 6 = 0 \]
This called characteristic equation
\((m+3)(m-2) = 0 \Rightarrow \) either \(m_1 = -3 \) or \(m_2 = 2 \), the solution of (**) is
\[y_h = c_1 e^{-3x} + c_2 e^{2x} \]

Ex iii
Solve \(y'' - 4y' + 5y = 0 \) ...(**)
Sol
let \(y = e^{mx} \), \(y' = me^{mx} \) and \(y'' = m^2 e^{mx} \), put in (*)
\[m^2 e^{mx} - 4me^{mx} + 5e^{mx} = 0 \]
\[e^{mx} (m^2 - 4 m + 5) = 0, \]
since \(e^{mx} \neq 0 \), then
\[m^2 - 4m + 5 = 0 \]
This called characteristic equation
\[m_1 = \frac{4 \pm \sqrt{16 - 20}}{2} = \frac{4 \pm \sqrt{-4}}{2}, \]
\[m_2 = 2 \pm i \Rightarrow \alpha + i\beta, \quad \alpha = 2, \beta = 1, \]
\[y_h = e^{2x} (c_1 \cos x + c_2 \sin x). \]
Non-Homogeneous-Second – Order (D. E) With Constant Coefficient

Consider the equation which in the form:-
\[y'' + a y' + by = f(x) \] \hspace{1cm} (22)
where a, b are constant.

To find the general solution of (22). We find solution of homogeneous part
\[y'' + a y' + by = 0 \] \hspace{1cm} (23),
let \(y_h \) be solution of (23).

Then the solution of (22) take by added the solution \(y_h \) to any another special solution \(y_p \) of (22) such that the general solution of (22) become
\[y(x) = y_h + y_p \]

Method of Undetermined Coefficient

The condition of this may that the form \(f(x) \), may be guessed for example \(f(x) \) may be a single power of x a polynomial an exponential function a sin, coin or sum function.

The general solution of (non- H. D.E) become.
\[y(x) = y_h + y_p \]
We student to find \(y_h \). We can select \(y_p \) from the following table.

Table 1

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(y_p)</th>
<th>mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kx^n)</td>
<td>(k_n x^n + k_{n-1} x^{n-1} + \ldots + k_1 x + k_0)</td>
<td>0</td>
</tr>
<tr>
<td>(n = 1, 2, \ldots)</td>
<td>(k_n, \ldots, k_1, k_0) are const tan ts</td>
<td></td>
</tr>
<tr>
<td>(ke^{px})</td>
<td>(ce^{px}, c) const tan t</td>
<td>(p)</td>
</tr>
<tr>
<td>(k \sin \alpha x)</td>
<td>(m \cos \alpha x + n \sin \alpha x)</td>
<td>(i \alpha)</td>
</tr>
<tr>
<td>(k \cos \alpha x)</td>
<td>(m) and (n) const tan t</td>
<td></td>
</tr>
</tbody>
</table>

How to use the table to find \(y_p \):

(a) If \(f(x) \) function of first column of table, then we take \(y_p \) from second column which corresponding it.
(b) If \(f(x) \) is sum of two function of 1-st column then we selected \(y_p \) sum of function of 2-th column which corresponding.
(c) If the number of \(f(x) \) is root of \(y_h \) we must modify the solution of \(y_p \),
Modification Rule
If the number listed in the table 1 the last column root of y_h (H-part) of equation (23).
Then the function in second column of table must be multiplied by x^m where m is the multiplicity of the root in that equation [hence for a second –order equation m may be equal 1 or 2].

Example 1
By use table 1 write y_p where
(a) $f(x)= 2x^3$
(b) $f(x)= 3e^{2x}$
(c) $f(x)= 4\sin 2x$
(d) $f(x)= \cos \alpha x +\sin \alpha x$
(e) $f(x)= e^{3x} +x$

Sol
(a) $y_p = k_3 x^3 + k_2 x^2 + k_1 x + k_0$
(b) $y_p = ce^{2x}$
(c) $y_p = m \cos \alpha x + n \sin \alpha x$
(d) $y_p = m \cos \alpha x + n \sin \alpha x$
(e) $y_p = ce^{3x} + k_1 x + k_0$

Example 2
Find the general solution of the following (d.e)
\[y'' - 4y = 8x^2\] \(*(*)\)

Sol
\[y'' - 4y = 0\] \]*(***)
let $y = e^{mx}$, $y' = me^{mx}$ and $y'' = m^2 e^{mx}$, put in *(***)
\[m^2 e^{mx} - 4e^{mx} = 0\]
\[e^{mx} (m^2 - 4) = 0, \]
since $e^{mx} \neq 0$, then
\[m^2 - 4 = 0\]
This called characteristic equation
\[m^2 = 4 \implies m = \pm 2, \text{ (or } m_1 = 2, m_2 = -2; \]
\[y_h = c_1 e^{2x} + c_2 e^{-2x}, \]
\[y_p = k_2 x^2 + k_1 x + k_0, \text{ we must find } k_2, k_1 \text{ and } k_0 \]
\[y_p = k_2 x^2 + k_1 x + k_0, \quad y_p' = 2k_2 x + k_1 \text{ and } y_p'' = 2k_2 \]

\[2k_2 - 4(k_2 x^2 + k_1 x + k_0) = 8x^2\]
\[-4k_2 = 8, \quad 2k_2 - 4k_0 = 0\]
\[k_2 = -2, k_1 = 0, k_0 = -1\]
\[y_p = -2 x^2 - 1\]
\[y(x) = y_h + y_p\]
\[y(x) = c_1 e^{2x} + c_2 e^{-2x} - 2 x^2 - 1.\]
Variation of Parameter

Consider the equation which in the form:

\[y^{\prime\prime} + a y^\prime + b y = f(x) \] (24)

Where \(a, b \) are constant, \(f(x) \) be any function of \(x \).

To solve (24)

(a) Find \(y_h \) (solution of (H-part),

\[y_h = c_1 u_1 + c_2 u_2 \] ..(25)

Where \(c_1 \) and \(c_2 \) are arbitrary constant, and \(u_1 \) and \(u_2 \) are two function as form:-

let \(e^{mx} \) or \(xe^{mx} \) \(e^{\alpha x} \cos \beta x \) or \(e^{\alpha x} \sin \beta x \), which solution of (H-part).

(b) We replace \(c_1 \) and \(c_2 \) by function of \(x \) say \(v_1 \) and \(v_2 \) then (#) become

\[y_h = c_1 v_1 + c_2 v_2 \] ...(26),

Which solution of (24),

\[y_h = v_1 u_1 + v_2 u_2 \]

\[y_h = (v_1 u_1 + v_2 u_2) + (v_1 u_1 + v_2 u_2) \](27),

from this

\[y_h = v_1 u_1 + v_2 u_2 \],

and

\[v_1 u_1 + v_2 u_2 = 0 \] ...(28)

Now

\[y_h = v_1 u_1 + v_1 u_1 + v_2 u_2 + v_2 u_2 \]

(c) Now put \(y_h, y_h^\prime \) and \(y_h^{\prime\prime} \) in (24)

\[v_1 u_1 + v_1 u_1 + v_2 u_2 + v_2 u_2 + a[v_1 u_1 + v_2 u_2] + b[c_1 v_1 + c_2 v_2] = f(x) \]

\[v_1 [u_1^{\prime\prime} + a u_1 + b u_1] + v_2 [u_2^{\prime\prime} + a u_2 + b u_2] + v_1 u_1 + v_2 u_2 = f(x) \]

Since \(y^{\prime\prime} + a y^\prime + b y = 0 \),

\[u_1^{\prime\prime} + a u_1 + b u_1 = 0 \]

\[u_2^{\prime\prime} + a u_2 + b u_2 = 0 \], and

\[v_1 u_1 + v_2 u_2 = f(x) \].

(\{the value in brackets vanish because by hypothesis both \(u_1 \) and \(u_2 \) are solution of homogeneous equation corresponding to (24).

Then the equation (24) satisfy by equation

\[v_1 u_1 + v_2 u_2 = 0 \] ...(29)

\[v_1 u_1 + v_2 u_2 = f(x) \] ...(30).

(d) By solve (29) and (30) we find two unknown \(v_1, v_2 \) and we find \(v_1, v_2 \) by integral.

(e) The general solution of (non- H. D.E) (24) is

\[Y(x) = v_1 u_1 + v_2 u_2 \]

Example 1

Find the general solution of the following (d.e)

\[y^{\prime\prime} - y^\prime - 2y = e^x \] ...(*)
Sol
(1) Find the general solution of (H.d.e) \(y'' - y' - 2y = 0 \), or
\(m^2 - m - 2 = 0 \)
\((m-2)(m+1) = 0 \)
\(m = 2 \) or \(m = -1 \)
\(y_h = c_1 e^{2x} + c_2 e^{-x} \),
\(u_1 = e^{2x} \), \(u_2 = e^{-x} \),
\(u_1' = 2e^{2x} \), \(u_2' = -e^{-x} \)

\[v_1' u_1 + v_2' u_2 = 0 \] #

\[v_1' u_1 + v_2' u_2 = f(x) \] ##

\[v_1' e^{2x} + v_2' e^{2x} = 0 \] #
\[2v_1' e^{2x} - v_2' e^{2x} = e^{2x} \] #

\[v_1' e^{2x} = e^{2x} \]
\[v_1' = \frac{1}{3}e^{-3x} \]
\[v_1 = -\frac{1}{9}e^{-3x} + c_1 \]

From (#)
\[v_1' e^{2x} = -v_2' e^{-x} \], or \[v_2' = -v_1' e^{3x} \]
\[v_2' = -\frac{1}{3} \]
\[v_2 = -\frac{1}{3}x + c_2 \]

Since \(Y(x) = v_1 u_1 + v_2 u_2 \)
\[Y(x) = (-\frac{1}{9}e^{-3x} + c_1)e^{2x} + (-\frac{1}{3}x + c_2)e^{2x} \].

Problems
Solve the following differential equations:-
(1) \(y'' + 4y' = 3x \)
(2) \(y'' - 4y' = 8x^2 \)
(3) \(y'' - y' - 2y = 10\cos x \)
(4) \(y'' - 4y' + 3y = e^x \)
(5) \(y'' + y = \sec x \).

Problems
Solve the following differential equations:-
(1) \(-x(2y-3)dx + (x^2 + 1)dy = 0 \)
(2) \(x^2 (y^2 + 1)dx + y \sqrt{x^3 + 1} dy = 0 \)
(3) \(\sin x \frac{dx}{dy} + \cosh 2y = 0 \)
(4) \(-\sqrt{2xy} \frac{dy}{dx} = 1 \)
(5) \(-\ln x \frac{dx}{dy} = \frac{x}{y} \)
(6) \(x e^y dy + \frac{x^2 + 1}{y} dx = 0 \)
(7) \(y \sqrt{1 + x^2} dy + \sqrt{y^2 - 1} dx = 0 \)
8. \(x^2 y \frac{dy}{dx} = (1+x) \csc y \)

9. \(\frac{dy}{dx} = e^{x-y} \)

10. \(e^y \sec x \, dx + \cos x \, dy = 0 \)
 (H. d. e)

11. \((x^2 + y^2) \, dx + xy \, dy = 0 \)

12. \(-x^2 \, dx + (y^2 - xy) \, dy = 0 \)

13. \(-x \, e^{yx} + y) \, dx - xy \, dy = 0 \)

14. \(-(x + y) \, dy + (x - y) \, dx = 0 \)

15. \(\frac{dy}{dx} = \frac{y}{x} + \cos \left(\frac{y - x}{x} \right) \)

16. \(x \, dy - 2y \, dx = 0 \)

17. \(2xy \, dy + (x^2 - y^2) \, dx = 0 \)
 (Linear d. e)

18. \(\frac{dy}{dx} + 2y = e^x \)

19. \(x \, y' + 3y = \frac{\sin x}{x^2} \)

20. \(2 \, y' - y = e^{x^2} \)

21. \(x \, dy + y \, dx = \sin x \, dx \)

22. \(x \, dy + y \, dx = ydy \)

23. \((x-1)^3 \, y' + 4 (x-1)^2 \, y = x + 1 \)

24. \(\cosh x \, dy + (y \, \sinh x + e^x) \, dx = 0 \)

25. \(-e^{2y} \, dx + 2(x \, e^{2y} - y) \, dy = 0 \)

26. \(-(x-2y) \, dy + y \, dx = 0 \)

27. \(-(y^2 + 1) \, dx + (2xy + 1) \, dy = 0 \)
 (Exact d. e)

Use the given integrating factor to make (d. e) exact then solve the equation

28. \((x+2y) \, dx - x \, dy = 0 \), \((I = \frac{1}{x^3}) \)

29. \(-y \, dx + x \, dy = 0 \), \((I = \frac{1}{xy}) \) or \((I = \frac{1}{(xy)^2}) \)

Solve (exact d. e)

30. \((x + y) \, dx + (x+y^2) \, dy = 0 \)

31. \((2xe^y + e^x) \, dx + (x^2 + 1) \, e^y \, dy = 0 \)

32. \((2xy + y^2) \, dx + (x^2 + 2xy - y) \, dy = 0 \)
33- \((x+ \sqrt{y^2 + 1})dx - (y- \frac{xy}{\sqrt{y^2 + 1}})dy = 0 \)

34- \(x \ dy + y \ dx + x^3 \ dx = 0 \)
35- \(x \ dy - y \ dx = x^2 \ dx \)
36- \((x^2 + x - y) \ dx + x \ dy = 0 \)
37- \((e^x + \ln y + \frac{y}{x}) \ dx + (\frac{x}{y} + \ln x + \sin y) \ dy = 0 \)
38- \((\frac{y^2}{1 + x^2} - 2y) \ dx + (2y \tan^{-1} x - 2x + \sinh y) \ dy = 0 \)
39- \(dy + \frac{y - \sin x}{x} \ dx = 0 \)

(Second-Order)
40- \(y'' + 2y = 0 \)
41- \(y'' + 5y' + 6y = 0 \)
42- \(y'' + 6y' + 5y = 0 \)
43- \(y'' - 6y' + 10y = 0 \)
44- \(y'' + y = 0 \)
45- \(y'' + y' \ x \)
46- \(y'' + y = \sin x \)
47- \(y'' - 2y' + y = e^x \)
48- \(y'' + 2y' + y = e^x \)
49- \(y'' = \sin x \)
50- \(y'' + 4y' + 5y = x + 2 \)
51- \(y'' - y = e^x \)
52- \(y'' + y = \sec x \)
53- \(y'' + y = \tan x \)
54- \(y'' + y = \cot x \)
CHAPTER THREE
Laplace Transformation (L. T)

Definition 2.1
Let \(f(t) \) be function of variable \(t \) which define on all value of \(t \) such that \((t > 0) \).
The Laplace transformation of \(f(t) \) which written as \(L \{f(t)\} \) is

\[
F(s) = L \{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt
\] .. (1)

Note 1
The Laplace transformation is define in (1) is converge to value of \(s \), and no define if the integral in (1) has no value of \(s \).

Laplace Transformation of Some Function:
Using the definition (1) to obtain the following transforms:
1- If \(f(t) = 1 \)

Solution

Since \(L \{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt = \int_{0}^{\infty} e^{-st} \, dt = \frac{1}{s} e^{0} = \frac{1}{s} \)

\[
\therefore \quad L \{1\} = \frac{1}{s}.
\]

2-If \(f(t) = e^{at} \)

Solution

Since \(L \{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt \)

\[
L \{f(t)\} = \int_{0}^{\infty} e^{-st} e^{at} \, dt = \int_{0}^{\infty} e^{(a-s)t} \, dt
\]

\[
= \int_{0}^{\infty} e^{-(s-a)t} \, dt = \frac{1}{s-a} e^{-(s-a)t} \int_{0}^{\infty}
\]

\[
= \frac{1}{s-a}
\]

\[
\therefore \quad L\{e^{at}\} = \frac{1}{s-a}.
\]

Note 2
Let \(f(t) \) be function and \(c \) constant then

(i) \(L \{cf(t)\} = cL \{f(t)\} \)

(ii) \(L \{f_1(t) \pm f_2(t)\} = L \{f_1(t)\} \pm L \{f_2(t)\} \)

3-If \(f(t) = \cos(wt) \)

4-If \(f(t) = \sin(wt) \).
Solution

From Euler formula

\(e^{-iwt} = \cos (wt) + i\sin (wt). \)

\[L\{e^{-iwt}\} = L\{\cos (wt)\} + i \ L\{\sin (wt)\} \](*).

But

\[L\{e^{iwt}\} = \frac{1}{s - iw}, \text{ from (2)} \]

\[\frac{1}{s - iw} = \frac{1}{s - iw} \times \frac{s + iw}{s + iw} = \frac{s + iw}{s^2 + w^2} \]

\[= \frac{s}{s^2 + w^2} + i \frac{w}{s^2 + w^2} \]

\(\therefore \ L\{e^{iwt}\} = \frac{s}{s^2 + w^2} + i \frac{w}{s^2 + w^2}, \text{ from (*)} \)

\[L\{\cos (wt)\} + i \ L\{\sin (wt)\} = L\{e^{iwt}\} = \frac{s}{s^2 + w^2} + i \frac{w}{s^2 + w^2} \]

From this

3- \(L\{\cos (wt)\} = \frac{s}{s^2 + w^2} \)

4- \(L\{\sin (wt)\} = \frac{w}{s^2 + w^2} \)

5-If \(f(t) = \sinh (wt). \)

6-If \(f(t) = \cosh (wt). \)

Solution

Since \(\sinh x = \frac{1}{2} [e^x - e^{-x}], \cos hx = \frac{1}{2} [e^x + e^{-x}]. \)

Now \(\sinh (wt) = \frac{1}{2} [e^{wt} - e^{-wt}], \)

\[L\{\sinh (wt)\} = \frac{1}{2} \{L (e^{wt}) - L(e^{-wt})\}, \]

\[= \frac{1}{2} \{ \frac{1}{s - w} - \frac{1}{s + w} \}. \]

\[= \frac{1}{2} \frac{2w}{s^2 - w^2} = \frac{w}{s^2 - w^2} \]

\(\therefore \ L\{\sinh (wt)\} = \frac{w}{s^2 - w^2}, \text{ and} \)
Example 1
Find \(L\{8-6e^{3t} + e^{-4t} + 5\sin 3t + 7\cosh 3t\} \)

Solution
\[
L(8) = 8L(1) = 8 \cdot \frac{1}{s} = \frac{8}{s}.
\]
\[
L(6e^{3t}) = 6L(e^{3t}) = \frac{6}{s-3}.
\]
\[
L(e^{-4t}) = \frac{1}{s+4}.
\]
\[
L\{5\sin (3t)\} = 5L\{\sin (3t)\} = 5 \cdot \frac{3}{s^2 + 9} = \frac{15}{s^2 + 9}.
\]
\[
L\{7\cosh (3t)\} = 7L\{\cosh (3t)\} = \frac{7s}{s^2 - 9}.
\]

Laplace Transformation of Differential

Theorem :-
If \(f(t) \) is continuous function of exponential on \([0, \infty) \) whose derivative is also exponential then the (L.T) of \(f'(t) \) is given by formula

\[
L\{f'(t)\} = \int_{0}^{\infty} e^{-st}f'(t) \, dt
\]

Proof
\[
\int u dv = uv - \int v du.
\]
Let \(u = e^{-st} \Rightarrow du = -se^{-st} \, dt \),
\(dv = f'(t) \, dt \Rightarrow v = f(t) \),

\[
\Rightarrow \int_{0}^{\infty} e^{-st}f'(t) \, dt = e^{-st}f(t) \bigg|_{0}^{\infty} + \int_{0}^{\infty} se^{-st}f(t) \, dt
\]

\[
= -f(0) + s \int_{0}^{\infty} e^{-st}f(t) \, dt
\]

\[
= -f(0) + s L\{f(t)\}.
\]

Where \(s \int_{0}^{\infty} e^{-st}f(t) \, dt = s L\{f(t)\} \).

\[
\therefore L\{f'(t)\} = s L\{f(t)\} - f(0).
\]

Corollary
If both \(f(t) \) and \(f'(t) \) are continuous functions of exponential order on \([0, \infty) \), and if \(f''(t) \) is also exponential then :-
\[L \{ f''(t) \} = s^2 L \{ f(t) \} - s f(0) - f'(0) \]

Proof

\[L\{ f''(t) \} = L \{ f'(t) \}' = sL \{ f'(t) \} - f'(0) \]
\[= s \left[s L \{ f(t) \} - f(0) \right] - f'(0) \]
\[= s^2 L \{ f(t) \} - s f(0) - f'(0). \]

Now in general

\[L \{ f^n(t) \} = s^n L \{ f(t) \} - s^{n-1} f(0) - \cdots - f^{(n-1)}(0). \]

Problem

Prove that

\[L \{ t^n \} = \frac{n!}{s^{n+1}}, \text{ where } n=1, 2, 3, \ldots, \text{ and } n!= n(n-1)(n-2)\ldots(n-n). \]

And 0! = 1.

Properties of L. T

1. **Shifting**

 If \(L \{ f(t) \} = f(s) = L \{ e^{at} f(t) \} f(s-a) \)

Example

Find \(L \{ e^{-4t} \cos 3t \} \)

Solution

\(f(t) = \cos 3t, a=-4, \text{ then } f(s) = L \{ f(t) \} = L \{ \cos 3t \} = \frac{s}{s^2 + 9} \)

\[L \{ e^{-4t} \cos 3t \} = \frac{s - (-4)}{(s - (-4))^2 + 9} = \frac{s + 4}{(s + 4)^2 + 9} \]

2. **L. T of Integrals:**

\[L \{ \int_0^t f(u) \, du \} = \frac{f(s)}{s} \]

Example

Find \(L \{ \int_0^t \sinh 2t \, dt \} \)

Solution
\[F(u) = L\{\sinh2t\} = \frac{2}{s^2 - 4}, \quad L\left\{ \int_0^t \sinh2tdt \right\} = \frac{2}{s^2 - 4} \]

\[= \frac{2}{s(s^2 - 4)} \cdot \]

(3) **Multiplication by \(t^n \)**
If \(L\{f(t)\} = f(s) \), then

\[L\{t^n f(t)\} = (-1)^n \frac{d^n f(s)}{ds^n} \]

Example
Evaluate \(L\{t^2 e^{3t}\} \)

Solution
\(f(t) = e^{3t} \)

\[L\{f(t)\} = L\{e^{3t}\} = \frac{1}{s - 3} = f(s) \]

\[f'(s) = \frac{-1}{(s - 3)^2} \]

\[f''(s) = \frac{2}{(s - 3)^3} \]

\[L\{t^2 e^{3t}\} = (-1)^2 \frac{2}{(s - 3)^3} = \frac{2}{(s - 3)^3} \]

(4) **Division by \(t \)**
If \(L\{f(t)\} = f(s) \), and \(t \lim_{t \to 0} \frac{f(t)}{t} \) exist

\[L\left\{ \frac{f(t)}{t} \right\} = \int_s^\infty f(u)du \]

Example
Evaluate \(L\left\{ \frac{\sin t}{t} \right\} \)

Solution
\(t \lim_{t \to 0} \frac{\sin t}{t} = 1 \), exists.

\(f(t) = \sin t \longrightarrow L\{\sin t\} = \frac{1}{s^2 + 1} = f(s) \)
\[f(u) = \frac{1}{u^2 + 1} \]

\[L \left\{ \frac{f(t)}{t} \right\} = L \left\{ \frac{\sin t}{t} \right\} = \int_{s}^{\infty} \frac{1}{u^2 + 1} \, du = \tan^{-1} u \bigg|_{s}^{\infty} = \tan^{-1} \infty - \tan^{-1} s \]

\[= \frac{\pi}{2} - \tan^{-1} s. \]

Example

Let \(f(t) = 2 \cos 3t \).

Find

\[L \{ f''(t) \} \]

Solution

\[L \{ f''(t) \} = s^2 L \{ f(t) \} - sf(0) - f'(0) \]

\(f(t) = 2 \cos 3t \), \(f(0) = 2 \cos(0) = 2 \), \(f'(t) = -6 \sin 3t \), \(f'(0) = -6 \sin(0) = 0 \),

\[L \{ f(t) \} = L \{ \cos 3t \} = \frac{s}{s^2 + 9} \text{,} \]

\[L \{ f(t) \} = 2L \{ \cos 3t \} = 2 \cdot \frac{2s}{s^2 + 9} = f(s). \]

\[L \{ f''(t) \} = s^2 \left[\frac{2s}{s^2 + 9} \right] - s [2] - 0 \]

\[= \frac{3s}{s^2 + 9} - 2s \]

\[L \{ f''(t) \} = \frac{-18s}{s^2 + 9}. \]

Unit Step Function \(u_a(t) \)

Definition 2.2

The unit step function is defined by:

\[u_a(t) = \begin{cases}
0 & \text{when } t < a \\
1 & \text{when } t > a
\end{cases} \]

If \(a = 0 \), then

\[u_0(t) = \begin{cases}
0 & \text{when } t < 0 \\
1 & \text{When } t > 0.
\end{cases} \]

If \(a = 2 \), then

\[U_2(t) = \begin{cases}
0 & \text{when } t < 2 \\
1 & \text{when } t > 2
\end{cases} \]

Definition 2.3.1
To find Laplace Transformation of unit step function \(L \{ u_a(t) \} \) is defined as:

Since
\[
 u_a(t) = \begin{cases}
 0 & \text{when } t < a \\
 1 & \text{when } t > a
 \end{cases}
\]

\[
 \therefore L \{ u_a(t) \} = \int_0^\infty e^{-st} f(t) \, dt = \int_0^\infty e^{-st} u_a(t) \, dt
\]

\[
 = \int_0^a e^{-st}(0) \, dt + \int_a^\infty e^{-st}(1) \, dt = -\frac{1}{s} e^{-st} \bigg|_{a}^{\infty} = -\frac{1}{s} [0 - e^{-sa}] = \frac{e^{-sa}}{s}
\]

Definition 2.3.2

To find the terms of the unit step function is defined by:

\[
f(t) = \begin{cases}
 1 & \text{when } 0 < t < 1 \\
 2 & \text{when } 1 < t < 2 \\
 -1 & \text{when } 2 < t < 3.
\end{cases}
\]

\[
 \therefore f(t) = 1[u_0 - u_1] + 2[u_1 - u_2] - 1[u_2 - u_3] = u_0 - u_1 + 2u_1 - 2u_2 - u_2 + u_3
\]

\[
 \therefore f(t) = u_0 + u_1 - 3u_2 + u_3
\]

Problem

Find Laplace Transformation of \(f(t) \) which defines in (Definition 2.3.2).

Solution

Since \(f(t) = u_0 + u_1 - 3u_2 + u_3 \)

\[
 \therefore L \{ f(t) \} = L \{ u_0(t) \} + L \{ u_1(t) \} - 3L \{ u_2(t) \} + L \{ u_3(t) \}
\]

\[
 = \frac{e^{-s(0)}}{s} + \frac{e^{-s}}{s} - 3 \frac{e^{-2s}}{s} + \frac{e^{-3s}}{s}
\]
\[\frac{1}{s} + \frac{e^{-s}}{s} - 3 \frac{e^{-2s}}{s} + \frac{e^{-3s}}{s}. \]

L. T of Periodic Functions

If \(f(t) \) is a periodic function of period \(T > 0 \) satisfying such that \(f(x+T) = f(x) \), then

\[
L \{ f(t) \} = \int_{0}^{T} e^{-st} f(t) dt \quad \frac{1}{1 - e^{-sT}}
\]

Gamma Function

Definition 2.4

If \(n > 0 \), then the gamma \(n \) becomes:

\[
\Gamma(n) = \int_{0}^{\infty} t^{n-1} e^{-t} dt \quad \text{..()}
\]

Important Properties of gamma function

(i) \(\Gamma(n+1) = n \Gamma(n) \)

(ii) \(\Gamma(n+1) = n! \)

(iii) \(\Gamma\left(\frac{1}{2}\right) = \Gamma(\Pi) \)

Table I

Some elementary function \(f(t) \) and their Laplace Transforms \(L \{ f(t) \} = f(s) \).
<table>
<thead>
<tr>
<th>Function</th>
<th>Laplace Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(t)$</td>
<td>$L{f(t)} = f(s)$</td>
</tr>
<tr>
<td>1 1</td>
<td>$\frac{1}{s}$</td>
</tr>
<tr>
<td>2 t</td>
<td>$\frac{1}{s^2}$</td>
</tr>
<tr>
<td>3 t^2</td>
<td>$\frac{2!}{s^3}$</td>
</tr>
<tr>
<td>4 $t^n, n = 1, 2, 3,...$</td>
<td>$\frac{n!}{s^{n+1}}$</td>
</tr>
<tr>
<td>5 e^{at}</td>
<td>$\frac{1}{s-a}$</td>
</tr>
<tr>
<td>6 $\cos wt$</td>
<td>$\frac{s}{s^2 + w^2}$</td>
</tr>
<tr>
<td>7 $\sin wt$</td>
<td>$\frac{w}{s^2 + w^2}$</td>
</tr>
<tr>
<td>8 $\cosh at$</td>
<td>$\frac{s}{s^2 - a^2}$</td>
</tr>
<tr>
<td>9 $\sinh at$</td>
<td>$\frac{a}{s^2 - a^2}$</td>
</tr>
<tr>
<td>10 $y'(t)$</td>
<td>$sL{y(t)} - y(0) = sf(s) - y(0)$</td>
</tr>
<tr>
<td>11 $y''(t)$</td>
<td>$s^2L{y(t)} - sy(0) - y'(0) = s^2f(s) - sy(0) - y'(0)$</td>
</tr>
<tr>
<td>12 $\int_{0}^{t} f(u)du$</td>
<td>$\frac{f(s)}{s}$</td>
</tr>
<tr>
<td>13 $t^n f(t)$</td>
<td>$\frac{(-1)^n \partial^n f(s)}{\partial s^n}$</td>
</tr>
<tr>
<td>14 $t^n (n \text{ positive})$</td>
<td>$\frac{\Gamma(n+1)}{s^{n+1}}$</td>
</tr>
</tbody>
</table>
Problems

Find Laplace transform \((f(s))\) of the following functions :-

1. \(f(t) = \sin^2 t\)
2. \(f(t) = t^4 e^{3t}\)
3. \(f(t) = e^t \cosh 3t\)
4. \(f(t) = \frac{t}{\sinh t}\)
5. \(f(t) = t^2 e^{3t}\)
6. \(f(t) = 3t + 4\)
7. \(f(t) = t^2 + at + b\)
8. \(f(t) = (a + bt)^2\)
9. \(f(t) = t e^{-t}\)
10. \(f(t) = (e^{2t} - 4)^2\)
11. \(f(t) = t e^{at} \sin at\)
12. \(f(t) = \cosh at \cos at\)
13. \(f(t) = \begin{cases} 0 & \text{when} \ 0 < t < 2 \\ 4 & \text{when} \ 2 < t. \end{cases}\)

14. Prove that \(\int_0^\infty t e^{-3t} \sin t \, dt = \frac{3}{50}\)

15. Prove that

 \(a) = \mathcal{L} \{a+bt\} = \frac{as + b}{s^2}\)

 \(b) = \mathcal{L} \{t \cos at\} = \frac{s^2 - a^2}{(s^2 + a^2)^2}\)

Inverse Laplace Transformation

If \(\mathcal{L} \{f(t)\} = f(s)\). Then we call \(f(t)\) is the inverse of \((L. T)\) of function \(f(s)\) and which written as:

\(f(t) = \mathcal{L}^{-1} \{f(s)\}\), for example

\(\mathcal{L} \{e^{3t}\} = \frac{1}{s-3} = f(s)\).

\(\mathcal{L}^{-1} \{f(s)\} = \mathcal{L}^{-1} \{\frac{1}{s-3}\} = e^{3t}\).

Some Properties of Inverse L. T
We see the L. T of first (9) in table I, we can inverse there Laplace to find inverse of this for example
\[L(1) = f(s) = \frac{1}{s}, \]
\[L^{-1}\{f(s)\} = L^{-1}\{\frac{1}{s}\} = 1, \]

Example

Find \(f(t) \), if \(f(s) = \frac{5}{s+3} \)

Solution

\[f(t) = L^{-1}\{\frac{5}{s-3}\} = 5L^{-1}\{\frac{1}{s+3}\} = 5e^{-3t} \]

Example

Find \(f(t) \), if \(f(s) = \frac{s+1}{s^2+1} \)

Solution

\[\frac{s}{s^2+1} + \frac{1}{s^2+1}, \]

\[f(t) = L^{-1}\{\frac{s}{s^2+1}\} + L^{-1}\{\frac{1}{s^2+1}\}, \]

\[= \cos t + \sin t. \]

Partial Fraction

If we want to find the inverse transform of a rational function as \(\frac{f(x)}{g(x)} \), where \(f \) and \(g \) are polynomials which the degree of \(f \) less than degree of \(g \) then. We can take advantage of partial transform is easily found as see in examples:-

Example

Find the inverse Laplace transform (\(f(t) \)), if \(f(s) = \frac{1}{s^2(s^2+1)} \)

Solution

\[f(s) = \frac{1}{s^2(s^2+1)}, \]

\[\frac{1}{s^2(s^2+1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{Cs + D}{s^2 + 1}, \]

\[1 = As^3 + Bs^2 + As + B + Cs^3 + Ds^2, \]
\[B = 1, \]
\[B + D = 0, \]
\[A + C = 0, \]
\[D = -1 \rightarrow A = 0 \rightarrow C = 0, \]
\[\frac{1}{s^2(s^2+1)} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \]
\[f(t) = L^{-1}\left\{ \frac{1}{s^2(s^2+1)} \right\} = L^{-1}\left\{ \frac{1}{s^2} \right\} - L^{-1}\left\{ \frac{1}{s^2+1} \right\}, \]
\[= t^2 - sint. \]

Example 2

Find the inverse Laplace transform \((f(t))\), if \(f(s) = \frac{s+1}{s^2+s-6}\)

Solution

\[f(s) = \frac{s+1}{s^2+s-6} = \frac{s+1}{(s+3)(s-2)} = \frac{A}{s+3} + \frac{B}{s-2}. \]

\[S+1 = As - 2A + Bs + 3B, \]
\[-2A + 3B = 1, \]
\[A+B = 1, \]
\[-2A + 3B = 1 \]
\[2A + 2B = 2 + \]
\[5B = 3 \rightarrow B = 3/5, A = 2/5, \]
\[f(t) = L^{-1}\{ F(s) \} = 2/5L^{-1}\{ \frac{1}{s+3} \} - 3/5L^{-1}\{ \frac{1}{s-2} \}, \]
\[= 2/5 e^{-3t} + 3/5 e^{2t}. \]

Problems

Find \(f(t)\) \{ the inverse Laplace transform \} of the following:-

1. \(f(s) = \frac{1}{s^2-1}\)
2. \(f(s) = \frac{1}{s^2(s^2+1)}\)
3. \(f(s) = \frac{s^2-6}{s^3+4s^2+3s}\)
4. \(f(s) = \frac{1}{s(s^2+4)}\)
5. \(f(s) = \frac{4}{s-2} - \frac{3s}{s^2+16} + \frac{5}{s^2+4}\)
6. \(f(s) = \frac{1}{s+3}\)
(7) \(f(s) = \frac{1}{s^2 + 9} \),

(8) \(f(s) = \frac{2s + 3}{s^2 + 9} \),

(9) \(f(s) = \frac{s + 3}{s^2 + s - 6} \).

Application of Laplace Transformation

Linear (D. E) With Constant Coefficient

To solve L- non homogeneous (d. e) of order n with constant coefficient.

We use same way as second- order (d. e) as form :-

\[a_0 y'' + a_1 y' + a_2 y = f(x) \] \((*)\)

Where \(a_0, a_1 \) and \(a_2 \) are constant, which satisfy initial condition:

\[y(0) = A \text{ and } y'(0) = B \] \((**)\)

Where A and B are choice constant.

Example

Find the solution of the following (d.e) by (L. T)

\[y'' + 3y' + 2y = 0 \] \((*)\)

Which satisfies initial condition?

\[y(0) = 0 \text{ and } y'(0) = 1. \]

Solution

\[L \{ y''(t) \} = s^2 \{ y(s) \} - s y(0) - y'(0) \]

\[L \{ y'(t) \} = s \{ y(s) \} - y(0). \]

\[L \{ y(t) \} = y(s) \]

Since \(L \{ y \} = y(s) \)

\[s^2 \{ y(s) \} - s y(0) - y'(0) + 3[s \{ y(s) \} - y(0)] + 2 y(s) = 0 \]

By use \(y(0) = y'(0) = 1, \)

\((s^2 + 3s + 2) y(s) = (s + 3) y(0) + y'(0), \)

\((s^2 + 3s + 2) y(s) = s + 3 + 1 = s + 4, \)

\[y(s) = \frac{s + 4}{s^2 + 3s + 2} = \frac{s + 4}{(s + 1)(s + 2)} = \frac{A}{s + 2} + \frac{B}{s + 1}. \]

\(S + 4 = As + 2B + As + A, \)

\(A + B = 1 \)

\(A + 2B = 4 \) -

\(-B = -3 \rightarrow B = 3 \rightarrow A = -2, \)
\[y(s) = \frac{-2}{s+2} + \frac{3}{s+1}, \]
\[y(t) = L^{-1}\{ y(s) \} = 3L^{-1}\{ \frac{1}{s+1} \} - 2L^{-1}\{ \frac{1}{s+2} \}, \]
\[\therefore y(t) = 3e^t - 2e^{2t} \]

Example 2
Find the solution of the following (d.e) by (L. T)
\[y'' + 4y' + 4y = 2 \] .. (i)
Which satisfies initial condition?
y(0) = 1 and y'(0) = 1.

Solution
\[L\{ y''(t) \} = s^2\{ y(s) \} - sy(0) - y'(0) \]
\[L\{ y'(t) \} = s\{ y(s) \} - y(0). \]
\[L\{ y(t) \} = y(s) \]

Since \(L\{ y \} = y(s) \)

\[
\begin{align*}
\frac{s^2}{s^2 + 4s + 4}y(s) &= \frac{2}{s} + 1 = \frac{2+s}{s} , \\
y(s) &= \frac{s + 2}{s(s^2 + 4s + 4)} = \frac{s + 2}{s(s + 2)^2} = \frac{s + 2}{s(s + 2)} , \\
y(s) &= \frac{s + 2}{s(s + 2)} = \frac{A}{s} + \frac{B}{s + 2} , \\
1 &= A(s+2) + Bs, \\
\rightarrow B = -\frac{1}{2} \text{ and } A = \frac{1}{2}, \\
y(s) &= \frac{2}{s} + \frac{1}{s + 2} , \\
\end{align*}
\]
\[y(t) = L^{-1}\left\{ y(s) = \frac{1}{s} \right\} - \frac{1}{2}L^{-1}\left\{ \frac{1}{s+2} \right\}, \]

\[\therefore \quad y(t) = \frac{1}{2} - \frac{1}{2}e^{-2t}. \]

Problems

Find the solution of the following (d.e) by (L. T), which satisfies the given initial conditions:

1. \(y'' + 4y' + 3y = 0, \) at \(y(0)= 3 \) and \(y'(0) =1, \)
2. \(y'' + 4y' + 4y = 2, \) at \(y(0)= 0 \) and \(y'(0) =1, \)
3. \(y'' - y = 0, \) at \(y(0)= 0 \) and \(y'(0) =1, \)
4. \(y'' - 5y' + 6y = 0, \) at \(y(0)= 0 \) and \(y'(0) =1, \)
5. \(y'' - 9y = \sin t, \) at \(y(0)= 1 \) and \(y'(0) =0, \)
6. \(y'' - 9y = e^t, \) at \(y(0)= 1 \) and \(y'(0) =0, \)
7. \(y'' + 4y = \sin t, \) at \(y(0)= 0 \) and \(y'(0) =1, \)
8. \(y'' + 4y' + 4y = 4 \cos 2t, \) at \(y(0)= 2 \) and \(y'(0) =5, \)
Fourier series

Periodic Function

Definition 3.1
The function f(x) satisfy the condition
\[f(x+T) = f(x) \]
For all value of x where T is real number then f(x) is called Periodic function, and if T least positive number satisfies (1), then T is called periodic number of function. We can find that:
\[F(x) = f(x+T) = f(x+2T) = (x+3T) = \ldots \ldots \ldots \ldots (x+nT). \]
And
\[F(x) = f(x-T) = f(x-2T) = (x-3T) = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (x-nT). \]
This means that
\[F(x) = (x \pm nT), \text{ where } n \text{ integer.} \]

Some Properties of Series
1- \(f(x+T) = f(x) \) Periodic function
2- \(n=\text{No of terms positive integer.} \)
3- \(\cos n\pi = \begin{cases} 1 & \text{if } n \text{ even (2, 4, 6…)} \\ -1 & \text{if } n \text{ odd (1, 3, 5………)} \end{cases} \)
4- \(-\cos 2n\pi =1, \)
5- \(\sin n\pi = \sin 2n\pi = 0, \)
6- \(\cos nx = \cos (-nx). \)

Some Important Integrals:-

1- \(\int_{0}^{2\pi} \sin nx \, dx = \int_{0}^{2\pi} \cos nx \, dx = 0, \text{ where } n \text{ integer.} \)
2- \(\int_{0}^{2\pi} \sin mx \sin nx \, dx = \frac{1}{2} \int_{0}^{2\pi} [\cos(m-n)x - \cos(m+n)x] \, dx = 0. \)
3- \[\int_{0}^{2\pi} \sin^2 nx \, dx = \frac{1}{2} \int_{0}^{2\pi} [1 - \cos 2nx] \, dx = \pi, \text{ where } n \text{ integers.} \]

4- \[\int_{0}^{2\pi} \cos nx \sin nx \, dx = \frac{1}{2} \int_{0}^{2\pi} \sin 2nx \, dx = 0. \]

5- \[\int_{0}^{2\pi} \cos^2 nx \, dx = \int_{0}^{2\pi} [\cos nx \cos nx] \, dx = 0. \]

Fourier series

Suppose that \(f(x) \) is a periodic function to \(x \), and \(2\pi \) is periodic number of it.

And the function \(f(x) \) is defined on the interval \((0 < x < 2\pi) \).

Then we can write \(f(x) \) in the form:-

\[
f(x) = a_0 + a_1 \cos x + a_2 \cos 2x + \ldots + a_n \cos nx + b_1 \sin x + b_2 \sin 2x + \ldots + b_n \sin nx \]

This means that

\[
f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \]

\[
= \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx) \]

Such that

\[
a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \, dx \]

\[
a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx, \quad n = 1, 2, 3, \ldots \]

\[
b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx. \]

The series (1) is called Fourier series of the function \(f(x) \).

If the function \(f(x) \) defined on interval \(-\pi < x < \pi\), then

\[
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx \]

\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad n = 1, 2, 3, \ldots \]

\[
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx. \]
Example 1
Find Fourier series of the function
\(f(x) = x \), from \(x = 0 \) to \(x = 2\pi \) or \(0 < x < 2\pi \).

Solution

Use the rule to find \(a_0, a_n \) and \(b_n \),

\[
a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \, dx = \frac{1}{2\pi} \int_{0}^{2\pi} x \, dx = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \, dx
\]

\[
a_0 = \frac{1}{4\pi} x^2 \bigg|_0^{2\pi} = \pi.
\]

\[
a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{0}^{2\pi} x \cos nx \, dx,
\]

\[
= \frac{1}{\pi} \left[x \frac{\sin nx}{n} - \frac{-\cos nx}{n^2} \right]^{2\pi}_0
\]

\[
= \frac{1}{\pi} \left[2\pi \frac{\sin 2n\pi}{n} + \frac{\cos 2n\pi}{n^2} \right] - \frac{\cos 0}{n^2}
\]

\[
= \frac{1}{\pi} \left[2\pi \frac{\sin 2n\pi}{n} + \frac{\cos 2n\pi - 1}{n^2} \right] = 0.
\]

\[
b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx = b_n = \frac{1}{\pi} \int_{0}^{2\pi} x \sin nx \, dx
\]

\[
= \frac{1}{\pi} \left[-x \frac{\cos nx}{n} - \frac{\sin nx}{n^2} \right]^{2\pi}_0
\]

\[
= -\frac{2}{\pi}.
\]

The equation (1) becomes:

\[
f(x) = \pi - 2 \sum_{n=1}^{\infty} \left(\frac{\sin nx}{n} \right)
\]

\[
f(x) = \pi - 2 \left(\sin x + \frac{\sin 2x}{3} + \sin 3x + \ldots \right)
\]

Even and Odd Function
If \(f(x) = f(-x) \), is called even function.
If \(f(-x) = -f(x) \), is called odd function.

Fourier series of Even and Odd Function

If \(f(x) \) is even when \(\{ x^2, x^4, x^6 \ldots \cos x, \sin^2 x \} \) \(f(x) \).
If \(f(x) \) is odd when \(\{ x, x^3, x^5, \ldots, \sin x \} \),

(i) If \(f(x) \) is even then
\[b_n = 0 \]

(ii) If \(f(x) \) is odd then
\[a_0 = a_n = 0. \]

Example 1

Find Fourier series of the function
\[f(x) = x, \text{ for } (-\pi < x < \pi). \]

Solution

Since \(f(-x) = -x = -f(x) \), \(\therefore \) the function is odd.

\[a_0 = a_n = 0. \]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin nx \, dx \]

\[= \frac{2}{\pi} \left[\frac{-x \cos nx}{n} - \frac{\sin nx}{n^2} \right]_{0}^{\pi} \]

\[= \frac{2}{\pi} \left[-\pi \cos n\pi \right] \]

\[= -\frac{2}{n} \cos n\pi \]

\[= -\frac{2}{n} (-1)^n \]

Then the series becomes:

\[f(x) = \sum_{n=1}^{\infty} b_n \sin nx \]

\[f(x) = -2 \sum_{n=1}^{\infty} (-1)^n \left(\frac{\sin nx}{n} \right) \]

\[f(x) = 2 \left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots \right) \]

Example 2

Find Fourier series of the function

\[f(x) = \begin{cases} 1 & \text{if } 0 < x < \pi, \\ 2 & \text{if } \pi < x < 2\pi. \end{cases} \]

Solution

\[a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \, dx = \frac{1}{2\pi} \int_{0}^{\pi} f(x) \, dx + \frac{1}{2\pi} \int_{\pi}^{2\pi} f(x) \, dx \]
\[a_0 = \frac{3}{2} \]

\[a_n = \frac{1}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_0^{\pi} f(x) \cos nx \, dx + \frac{1}{\pi} \int_0^{\pi} f(x) \cos nx \, dx \]

\[= \frac{1}{\pi} \int_0^{\pi} \cos nx \, dx + \frac{1}{\pi} \int_0^{\pi} 2 \cos nx \, dx, \]

\[= \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_0^{\pi} + \frac{1}{\pi} \left[\frac{\sin nx}{n^2} \right]_0^{2\pi}, \]

\[\frac{1}{\pi} \int_0^{\pi} x \cos nx \, dx, \]

\[= \frac{1}{\pi} \left[\frac{\sin nx}{n} - \frac{-\cos nx}{n^2} \right]_0^{2\pi} = 0. \]

\[a_n = 0. \]

\[b_n = \frac{1}{\pi} \int_0^{\pi} \sin nx \, dx + \frac{1}{\pi} \int_0^{\pi} 2 \sin nx \, dx \]

\[= \frac{1}{\pi} \left[\frac{-\cos nx}{n} \right]_0^{\pi} + \frac{1}{\pi} \left[\frac{2 \cos nx}{n} \right]_0^{2\pi}, \]

\[= \frac{1}{\pi} \left[\frac{\cos n\pi - 1}{n} \right] = \frac{(-1)^n - 1}{n\pi}, \]

\[: b_n = \frac{(-1)^n - 1}{n\pi}, \]

\[a_0 = \frac{3}{2}, \quad a_n = 0. \quad b_0 = \frac{-2}{\pi}, \quad b_1 = 0 \quad b_3 = \frac{-2}{3\pi}, \]

\[\therefore f(x) = 3/2 - \frac{2}{\pi} \left[\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \ldots \right]. \]

Half-Range Series

If we want find Fourier series on interval \((0 < x < \pi)\), does not on all interval \((-\pi < x < \pi)\), then we can find the Fourier series by :-

1- Fourier Cosine series or \(f(x)\) an even function as:-

\[\]
\[f(x) = a_0 + a_1 \cos x + a_2 \cos 2x + \cdots + a_n \cos nx. \]

2- Fourier Sine series or \(f(x) \) an odd function as:-

\[f(x) = b_1 \sin x + b_2 \sin 2x + \cdots + b_n \sin nx \]

Such that

\[
a_0 = \frac{1}{\pi} \int_{0}^{\pi} f(x) \, dx
\]

\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx, \quad n = 1, 2, 3, \ldots
\]

\[
b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx.
\]

Example 3

Find cosine Half-range series for the function defined as \(f(x) = x, \) for \(0 < x < \pi. \)

Solution

Use the rule to find \(a_0 \) and \(a_n \)

\[
a_0 = \frac{1}{\pi} \int_{0}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} x \, dx = \frac{1}{\pi} \int_{0}^{\pi} f(x) \, dx
\]

\[
a_0 = \frac{1}{2\pi} \left[x^2 \right]_0^{\pi} = \frac{\pi}{2}.
\]

\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx \, dx,
\]

\[
= \frac{2}{\pi} \left[\frac{x \sin nx}{n} - \frac{-\cos nx}{n^2} \right]_0^{\pi}
\]

\[
= \frac{2(\cos n\pi - 1)}{\pi n^2}
\]

\[
a_n = \begin{cases}
0 & \text{if } n \text{ even}, \\
\frac{-4}{\pi n^2} & \text{if } n \text{ odd}
\end{cases}
\]
\[f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{\cos 3x}{3} + \frac{\cos 5x}{5} + \ldots \right]. \]

Example 4

Find sine Half-range series for the function defined as

\[f(x) = x, \quad \text{for} \quad 0 < x < \pi. \]

Solution

Use the rule to find \(b_n \)

\[
\begin{align*}
 b_n &= \frac{2}{\pi} \int_0^\pi f(x) \sin nx \, dx = b_n = \frac{2}{\pi} \int_0^\pi x \sin nx \, dx = \frac{2}{\pi} \int_0^\pi x \sin nx \, dx \\
 &= \frac{2}{\pi} \left[-x \frac{\cos nx}{n} - \sin nx \frac{\sin nx}{n^2} \right]_0^\pi \\
 &= \frac{2}{\pi} \left[-\frac{\cos n\pi}{n} \right] \\
 &= -\frac{2}{n} \cos n\pi \\
 &= -\frac{2}{n} (-1)^n
\end{align*}
\]

Then the series becomes:

\[f(x) = \sum_{n=1}^{\infty} b_n \sin nx \]

\[f(x) = -2 \sum_{n=1}^{\infty} (-1)^n \left(\frac{\sin nx}{n} \right) \]

\[f(x) = 2 \left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \ldots \right). \]
CHAPTER FOUR

Partial Differential Equations

Partial Differential Equations (P. D.E)
Partial Differential Equations are Differential Equations in which the unknown function of more than one independent variable.

Types of (P. D.E)
The following some type of (P. D.E):

1-Order of (P. D.E)
The order of (P. D.E) is the highest derivative of equation for example:-
$U_x = U_y$ First-order (p. d. e).
$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ Second-order (p. d. e).

2-The Number of Variables
For example:-
$U_x = U_{tt}$ (two variables x and t).

$U_x = U_{rr} + \frac{1}{r} U_r + \frac{1}{r^2} U_{\theta \theta}$ (Three variables t, r and θ).

3-Linearity
The (P. D.E) is linear or non-linear, is linear (P. D.E) if u and whose derivative appear in linear form (non-linear if product two dependent variable or power of this variable greater than one).

For example {the general second L. P. D.E in two variable}
$A u_{xx} + B u_{xy} + C u_{yy} + D u_x + E u_y + F u + G = 0$(*)
Where A, B, C, D, E, F and G are constant or function of x and y.

Example1
Determine which (L. P. D.E) is, order and dependent or independent variable in following:-

\[1 - \frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} \]

Linear second degree u, dependent variable, x and t are independent variable.

\[2 - x^2 \frac{\partial^3 r}{\partial y^3} = y^3 \frac{\partial^2 r}{\partial x^2} \]

Linear 3- degree(r, dependent variable, x and y are independent variable.

\[3 - w \frac{\partial^3 w}{\partial y^3} = rst \]

Non-Linear 3- degree(w, dependent variable, r, s and t are independent variable.

\[4 - \frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 Q}{\partial z^2} = 0 \]

Linear 2- degree(Q, dependent variable, x, y and z are independent variables, homogeneous.

\[5 - \left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial u}{\partial x} \right)^2 = 0 \]

Non-Linear 1- degree(u, dependent variable, t and x are independent variables, homogeneous.

Solution of (P. D.E)

A solution of (P. D.E) mean that the value of dependent variable which satisfied the (P. D.E) at all points in given region R.

For Physical Problem, we must be given other conditions at boundary, these are called boundary if these condition are given at t=0 we called them as initial conditions its order.

For a linear homogeneous equation if
\[u_1, u_2, \ldots, u_n \] are n solution then the general solution can be written as (n-th order p. d. e)
\[u = c_1 u_1 + c_2 u_2 + \ldots + c_n u_n. \]

Note

We can find the solution of (P. D.E) by sequence of integrals as see in the following examples:

Example2

Find the solution of the following (P. D.E)
\[\frac{\partial^2 z}{\partial x \partial y} = 0 \]

Solution
\[
\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = 0
\]
By integrate (w. r. to) \(x\) gives
\[
\frac{\partial z}{\partial y} = c(y)
\]
Where \(c(y)\) is arbitrary parametric of \(y\). Also by integrate (w. r. to) \(y\) gives
\[
z = \int c(y) \partial y + c(x)
\]
Where \(c(x)\) is arbitrary parametric of \(x\).

Example 3
Find the solution of the following (P. D.E)
\[
\frac{\partial^2 z}{\partial x \partial y} = x^2 y
\]
Solution
By integrate (w. r. to) \(x\) gives
\[
\frac{\partial z}{\partial y} = \frac{x^3 y^2}{3} + c(y)
\]
By integrate (w. r. to) \(y\) gives
\[
z = \frac{x^3 y^2}{6} + \int c(y) \partial y + c(x)
\]
\[
z = \frac{x^3 y^2}{6} + F(y) + c(x).
\]

Example 4
Find the solution of the following (P. D.E)
\[
\frac{\partial^2 u}{\partial x \partial y} = 6x + 12y^2
\]
With boundary condition, \(u(1,y) = y^2 - 2y\), \(u(x,2) = 5x - 5\)

Solution
By integrate (w. r. to) \(x\) gives
\[
\frac{\partial u}{\partial y} = 3x^2 + 12y^3 x + c(y)
\]
By integrate (w. r. to) \(y\) gives
\[
u = 3x^2 y + 4y^3 x + \int c(y) \partial y + g(x)
\]
\[
\therefore u(x,y) = 3x^2 y + 4y^3 x + h(y) + g(x)
\]
\[
u(1,y) = 3y + 4y^3 + h(y) + g(l) = y^2 - 2y
\]
\[
h(y) = y^2 - 4y^3 - 5y - g(l)
\]
\[
\therefore u(x,y) = 3x^2 y + 4y^3 x + y^2 - 4y^3 - 5y - g(l) + g(x)
\]
\[
\therefore u(x,2) = 6x^2 + 32x + 4 - 32 - 10 - g(l) + g(x) = 5x - 5
\]
\[
g(x) = 33 - 27x - 6x^3 + g(l)
\]
\[u(x, y) = 3x^2y + 4y^3x + y^2 - 4y^3 - 5y + 33 - 27x - 6x^2 \]

Formation of (P. D.E)

A (P. D.E) may formed by a eliminating arbitrary constants or arbitrary function from a given relation and other relation obtained by differentiating partially the given relation.

Note ii

Suppose the following relation:-

1. \[\frac{\partial z}{\partial x} = z_x = p \]
2. \[\frac{\partial z}{\partial y} = z_y = q \]
3. \[\frac{\partial^2 z}{\partial x^2} = z_{xx} = r \]
4. \[\frac{\partial^2 z}{\partial y^2} = z_{yy} = t \]
5. \[\frac{\partial^2 z}{\partial x \partial y} = z_{xy} = s \]

Example 5

Form a Partial Differential Equations from the following equation:-

\[Z = (x-a)^2 + (y-b)^2 \]

Solution

\[\frac{\partial z}{\partial x} = z_x = 2(x-a) \]
\[\frac{\partial z}{\partial y} = z_y = 2(y-b) \]

\[\square \text{ Eq}(1) \text{ become} \]

\[Z = \left(\frac{1}{2} \right) z_x^2 + \left(\frac{1}{2} \right) z_y^2 \]
\[4Z = (z_x)^2 + (z_y)^2 \]
\[4Z = (p)^2 + (q)^2 \]

Example 6

Form a Partial Differential Equations from the following equation:-

\[Z = f(x^2 + y^2) \]

Solution

\[Z_x = 2xf'(x^2 + y^2) \]
\[Z_y = 2yf'(x^2 + y^2) \]

\[\text{Eq}(2) \text{ become} \]

\[\frac{z_x}{x} = \frac{z_y}{y} \]
\[-x Z_y + y Z_x = 0 \]
\[yp - xq = 0 \]
Example 7
Form a Partial Differential Equations from the following equation:-
\[Z = ax + by + a^2 + b^2 \]
(3).

Solution
\[Z_x = a \]
\[Z_y = b \]
Eq(3) become
\[Z = x Z_x + y Z_y + (Z_x)^2 + (Z_y)^2 \]

Example 8
Form a Partial Differential Equations from the following equation:-
\[v = f(x - ct) + g(x + ct) \]

Solution
\[v_x = f'(x - ct) + g'(x + ct) \]
\[v_t = -cf'(x - ct) + cg'(x + ct) \]
\[v_{xx} = f''(x - ct) + g''(x + ct) \]
\[v_{tt} = c^2 f''(x - ct) + c^2 g''(x + ct) \]
\[v_{tt} = c^2 [f''(x - ct) + g''(x + ct)] \]
\[\Box \]
\[v_{tt} = c^2 v_{xx}, \quad \text{or} \quad \frac{\partial^2 v}{\partial t^2} = c^2 \frac{\partial^2 v}{\partial x^2} \]
One dimensional Wave equation

Solution of First Order Linear (P. D. E)
Let the Partial Differential Equation as form:-
\[Pp + Qq = R \]
(4)
Where P, Q and R are function of x, y and z.

So the solution of this equation is the same as the solution of simultaneous
\[\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \]
(5)

Eq (5) are calle LaGrange Auxiliary Equations or (characteristic equation).

A solution of Eq(5), can be written as
\[U(x, y, z) = c_1, \]
\[V(x, y, z) = c_2 \]
The general solution written as
\[F(U, V) = 0, \quad \text{or} \quad F(c_1, c_2) = 0. \]

Note iii
To solve Eq(5), we note that:-
(i) If P or Q or R equal to zero then dx or dy or dz equal to zero respectively. For example
If R=0 → dz =0 → Pdy = Qdx from Eq(5), which can easily to solve it.
(ii) In case separable the variable in problem, then we can write characteristic Eq(5), in the following form
\[
\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \rightarrow \lambda dx + \mu dy + \beta dz = 0
\]
We selected the value of λ, μ and β such that gives λP + μQ + βR =0, → λdx + μdy + βdz =0.
Which help to find of **Solution of (P. D.E).**

Example 9
Solve the following Partial Differential Equation
\[xzp+yzq = xy\]

Solution
Suppose the following relation:-

Where
\[
\frac{\partial z}{\partial x} = z_x = p, \quad \frac{\partial z}{\partial y} = z_y = q
\]

P= xz, Q= yz, and R= xy

\[
\frac{dx}{xz} = \frac{dy}{yz} \rightarrow dx = \frac{dx}{x} = \frac{dy}{y}
\]

\[\ln x = \ln y = \ln c_1\]

\[\frac{x}{y} = c_1 = V\] ……………………………………….. (6)

\[\frac{dy}{yz} = \frac{dz}{xy} \rightarrow \frac{dy}{x} = \frac{dz}{z} \rightarrow xdy = zdz\]

\[zdz = c_1 y dy\]

\[\frac{z^2}{2} = c_1 + c\]

\[\frac{x^2}{2} = \frac{xy}{2} = c\]

\[z^2 - xy = 2c = c_2 = V\]

The general solution
F (c_1, c_2) =0, or

\[F \left(\frac{x}{y}, z^2 - xy \right) = 0.\]
Solve the following Partial Differential Equation
\[(x+z)p – (x+z)q = x-y \] (7)

Solution
P = x+z, Q = -(x+z), and R = x-y

\[
\frac{dx}{y+z} = \frac{dy}{-(x+z)} = \frac{dz}{x-y} \rightarrow \frac{\lambda dx + \mu dy + \beta dz}{\lambda(y+z) - \mu(x+z) + \beta(x-y)}
\]

\[
\therefore \frac{dx + dy + dz}{0}
\]

Where \(\lambda = 1, \mu = 1, \beta = 1\).

\[
\therefore dx + dy + dz = 0.
\]

x + y + z = \(c_1 = U\).

For \(\lambda = x, \mu = y, \beta = -z\)

\[
\frac{x dx + y dy - zdz}{0}
\]

\[
x^2 + y^2 - z^2 = 2c = c_2 = V
\]

The general solution

\[F(c_1, c_2) = 0, \text{ or } F(x + y + z, x^2 + y^2 - z^2) = 0.\]

Example 11

Solve the following :-
\[xz Z_x + yz Z_y + (x^2 + y^2) = 0\]

Solution
\[xz Z_x + yz Z_y = -(x^2 + y^2)\]

1- \[
\frac{dx}{xz} = \frac{dy}{yz}
\]

\[
\frac{dx}{x} = \frac{dy}{y}
\]

\[
\frac{dx}{x} - \frac{dy}{y} = 0
\]

\[\ln x - \ln y = \ln c_1\]

\[\frac{y}{x} = \ln c_1 \]

\[\frac{y}{x} = c_1 \ \ (1)\]

2- \[
\frac{dx}{xz} = \frac{dz}{-(x^2 + y^2)}
\]

From (1) \(y = x \ c_1\)
\[
\frac{dx}{xz} = \frac{dz}{-(x^2 + c_1^2 x^2)}
\]
\[
\frac{dx}{xz} = \frac{dz}{-x^2(1 + c_1^2)}
\]
-x(1 + c_1^2) dx = dz
x(1 + c_1^2) dx + dz = 0
\[
\frac{x^2}{2}(1 + c_1^2) + \frac{z^2}{2} = c_2
\]
x^2 + x^2 c_1^2 + z^2 = 2c_2,
x^2 + y^2 + z^2 = c_3, \text{ where } c_3 = 2c_2.
The general solution
F (c_1, c_3) = 0, or
F (\frac{y}{x}, x^2 + y^2 + z^2) = 0

Problems
Find the solution of the following Partial Differential Equation:-

1. \(2p + 3q = 1 \)
2. \(p - xq = z \)
3. \(y^2z - x^2q = x^3y \)
4. \((y + z)p + (x + z)q = x + y \)
5. \(ap + bq + cz = 0 \)
6. \((y^2 + z^2 - x^2)p - 2x y q + 2xz = 0 \)

Theorem 1
If \(u_1, u_2, \ldots \) are solution of equation
F \((\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \ldots)u = 0 \), Then

\[U = c_1 u_1 + c_2 u_2 + \ldots \text{ is solution also, where } u = c_1, c_2, \ldots \text{ are constants.} \]

Method of Variable Sparable
Let the Partial Differential Equation as

F \((\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \ldots)u = 0 \).

Let the general solution of above equation is

Let \(u (x, t) = XT \), or u (x, t) = X(x)T(t) \ Be solution of \(P.D.E \) \ where X and Y \ is function of x only, and Y function of y only. As see in the following problems:-

Examp 12
Solve the following Partial Differential Equation with boundary condition

\[\frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} = 0 \quad \text{With boundary condition.} \]

\[u (0, y) = 4e^{-2y} - 3e^{-y} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (8) \]

Solution
To solve Eq(8) suppose
$$u(x, t) = XT. \text{ Be solution of (8) where X is function of x only, and Y function of y only.}$$

$$\frac{\partial u}{\partial x} = YX', \quad \frac{\partial u}{\partial y} = XY'$$

$$X' = \frac{dX}{dx}, \quad Y' = \frac{dY}{dy}$$

Put in eq (8)

$$YX' + 3XY' = 0$$

Now let

$$\frac{X'}{3X} = \frac{Y'}{Y} = c$$

Now let

$$\frac{X'}{3X} = \frac{Y'}{Y} = c$$

$$X' - 3CX = 0, \quad Y' - CY = 0,$$

$$X = a_1e^{3cx}, \quad Y = a_2e^{-cy}$$

$$u(x, t) = XT = a_1a_2e^{3cx-cy} = Be^{c(3x-y)}, \text{ where } B = a_1a_2, \text{ are constant.}$$

Now let

$$u_1 = b_1e^{c_1(3x-y)}, \quad \text{and } u_2 = b_2e^{c_2(3x-y)} \text{ solution of (8) (theorem 1)}$$

$$u = u_1 + u_2 = b_1e^{c_1(3x-y)} + b_2e^{c_2(3x-y)} \text{, from boundary condition}$$

$$u(0, y) = b_2e^{c_2y} + b_1e^{-c_1y} = 4e^{-2y} - 3e^{-6y}$$

$$b_1 = 4, \quad b_2 = -3, \quad c_1 = 2, \quad c_2 = 6$$

$$u(x, y) = 4e^{2(3x-y)} - 3e^{6(3x-y)}$$

Example 13

Find the solution of following [Heat equation] by using partial differential equation:-

$$\frac{\partial^2 u}{\partial t^2} = 2 \frac{\partial^2 u}{\partial x^2} \quad ... \ (9)$$

With boundary condition.

(1) $$u(0, t) = 0, \quad (2) u(10, t) = 0, \text{ for all } t,$$

(3) $$u(x, 0) = 50 \sin \frac{3\pi}{2} x + 20 \sin 2\pi x - 10 \sin 4\pi x$$

Solution

Let $$u(x, t) = XT. \text{ Be solution of (9)}$$
\[
\frac{\partial u}{\partial t} = XT'
\]
\[
\frac{\partial^2 u}{\partial x^2} = TX''
\]

Put in (1)
\[XT' = 2 TX'' \]... (10)

We can write (10) in the form:
\[
\frac{T'}{2T} = \frac{X''}{X}
\]

Let
\[
\frac{T'}{2T} = \frac{X''}{X} = c
\]

Where \(c\) be constant
\[T' - 2cT = 0, \quad X'' - cX = 0\] there three cases OF \(C\) (\(C=0, C>0\) and \(c<0\))

Case I. If \(c=0\)
\[T' = 0, \quad \rightarrow \quad T = c_1 \]
and
\[X'' = 0, X = c_2 x + c_3 \]

\[U = TX = c_1 (c_2 x + c_3)\]

\[U = Ax + B\]

Where \(A = c_1 c_2, B = c_1 c_3\)

\[U(0, t) = B = 0\]

\[U(x, t) = Ax\]

\[U(10, t) = 10A = 0 \quad \rightarrow \quad A = 0\]

\[\therefore U = 0\]

Which trivial solution \(c \neq 0\)

Case II. If \(C>0\)
\[T = e^{2cxt} = c_1 \rightarrow T = c_1 e^{2ct}\]
\[X = c_2 e^{\sqrt{c} x} + c_3 e^{-\sqrt{c} x}\]

\[u(x, t) = XT, \quad u = c_1 e^{2ct} \left(c_2 e^{\sqrt{c} x} + c_3 e^{-\sqrt{c} x} \right)\]

\[A = c_1, c_2, \text{ and } B = c_1, c_3\]

\[U(0, t) = e^{2ct} (A + B) = 0\]

\[e^{2ct} \neq 0 \rightarrow A + B = 0 \rightarrow A = -B\]
\[U(x,t) = B e^{-2ct} \left(e^{\sqrt{c}x} - e^{-\sqrt{c}x} \right) \]

\[U(10,t) = B e^{2Ct} \left(e^{10\sqrt{c}} - e^{-10\sqrt{c}} \right) = 0 \]

If \(B=0 \) \(\Rightarrow\) \(A=0 \) \(\Rightarrow\) \(U=0 \) Which trivial solution \(B \neq 0 \)

\[e^{10\sqrt{c}} - e^{-10\sqrt{c}} = 0 \rightarrow e^{10\sqrt{c}} - e^{-10\sqrt{c}} = 0 \rightarrow e^{10\sqrt{c}} - e^{-10\sqrt{c}} = e^{10\sqrt{c}} - e^{-10\sqrt{c}} = 1 \text{ which impossible since } e^{10\sqrt{c}} \neq 1 \]

There is no solution if \(C > 0 \).

Case III. If \(c<0 \), let \(c = -k^2 \)

\[k^2 \neq 0 \rightarrow T' + 2k^2T = 0, \quad X'' + k^2X = 0 \rightarrow T = c_1 e^{-2k^2t}, \quad X = c_2 \cos kx + c_3 \sin kx. \]

\[U(x,t) = c_1 e^{-2k^2t} (c_2 \cos kx + c_3 \sin kx) \]

\[U(x,t) = e^{-2k^2t} (A \cos kx + B \sin kx) \]

Where \(A = c_1 c_2 \), \(B = c_1 c_3 \)

\[U(0,t) = e^{-2k^2t} (A) = 0 \rightarrow A = 0, \quad \text{because } e^{-2k^2t} \neq 0 \]

\[U(x,t) = B e^{-2k^2t} (\sin kx) \]

\[U(10,t) = B e^{-2k^2t} (\sin 10k) = 0 \]

Since \(B \neq 0 \), \(e^{-2k^2t} \neq 0 \)

\[\sin 10k = 0 \leftrightarrow 10k = n \Pi, \text{ where } n = 0 \pm 1 \pm 2 \pm ... \]

\[\leftrightarrow k = \frac{n \Pi}{10} \]

\[U(x,t) = B e^{-2\frac{n \Pi^2}{100}t} \left(\sin \frac{n \Pi}{10} x \right) = B e^{-2\frac{n \Pi^2}{50}t} \left(\sin \frac{n \Pi}{10} x \right) = \]

\[U(x,t) = b_1 e^{-\frac{n \Pi^2}{50}t} \left(\sin \frac{n \Pi}{10} x \right) \]

\[U(x,t) = b_2 e^{-\frac{n \Pi^2}{50}t} \left(\sin \frac{n \Pi}{10} x \right) \]

\[U(x,t) = b_3 e^{-\frac{n \Pi^2}{50}t} \left(\sin \frac{n \Pi}{10} x \right) \]

\[U(x,t) = b_1 e^{-\frac{n \Pi^2}{50}t} \left(\sin \frac{n \Pi}{10} x \right) + b_2 e^{-\frac{n \Pi^2}{50}t} \left(\sin \frac{n \Pi}{10} x \right) + b_3 e^{-\frac{n \Pi^2}{50}t} \left(\sin 2\frac{n \Pi}{10} x \right) \]
\[U(x,0) = b_1 \sin \frac{n_1 \pi}{10} x + b_2 \sin \frac{n_2 \pi}{10} x + b_3 \sin \frac{n_3 \pi}{10} x = \\
50 \sin \frac{3\pi}{2} x + 20 \sin 2\pi x - 10 \sin 4\pi x \]

\(b_1 = 50, \quad b_2 = 20, \quad b_3 = -10 \),

\[n_1 = \frac{3\pi}{2} \quad \rightarrow n_1 = 15, \quad n_2 = 20, \quad n_3 = 40 \]

\[U(x,t) = 50 e^{\frac{9\pi^2 t}{2}} \sin \frac{n_3 \pi}{2} x + 20 e^{-8\pi^2 t} \sin 2\pi x - 10 e^{-32\pi^2 t} \sin 4\pi x \]

Example 14

Find the solution of following [Wave equation] by using partial
differential equation:-

1. \(\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} \) \quad With boundary condition.
2. \(u(0, t) = 0 \), \(u(L, t) = 0 \), for all \(t \), \(L > 0 \) \((4) \) \(u(x, 0) = f(x) \).
3. \(\frac{\partial u}{\partial t} = g(x), \text{ at } t=0 \).

Solution

Let \(u(x, t) = XT \). Be solution of (1) where \(X \) is function of \(x \) only, and
\(Y \) function of \(y \) only.

\[XT'' = 4 TX'' \]

Put in (1)

\[XT'' = 4 TX'' \]

\[\frac{T''}{4T} = \frac{X''}{X} = k^2 \]

Where \(k \) be constant

\(T'' - 4k^2 T = 0, \quad X'' - k^2 X = 0 \) (there three cases)

Case I. \(k^2 = 0 \)

\(T'' = 0 \),

\(T = at + b \)

\(\therefore \)

\(X'' = 0, X = cx + d \)
\[U = TX = (at+b)(cx+d) \]
\[U(0,t) = (at+b)(d) = 0 \]
\[at + b \neq 0 \rightarrow b = 0 \]
\[U(x,t) = (at+b)cx \]
\[U(L,t) = (at+b)cL = 0 \]
\[cL = 0 \]
\[L \neq 0 \rightarrow c = 0 \]
\[cx + d = 0 \]
\[U(x,t) = 0 \]

Case II. If \[k^2 > 0 \]
\[T'' = -4k^2T = 0, \quad X'' - k^2X = 0 \]

\[T = a e^{2kt} + b e^{-2kt}, \quad X = c e^{kx} + d e^{-kx} \]
\[U(x,t) = (a e^{2kt} + b e^{-2kt})(c e^{kx} + d e^{-kx}) \]
\[U(0,t) = (a e^{2kt} + b e^{-2kt})(c + d) = 0 \]
\[c + d = 0 \rightarrow d = -c \]
\[U(x,t) = c(a e^{2kt} + b e^{-2kt})(e^{kx} - e^{-kx}) \]
\[U(L,t) = c(a e^{2kt} + b e^{-2kt})(e^{kL} - e^{-kL}) = 0 \]
If \[c = 0 \rightarrow X = 0 \rightarrow U = 0 \]
\[e^{kL} - e^{-kL} = 0 \rightarrow e^{kL} = e^{-kL} \rightarrow e^{2kL} = 1, \text{ which impossible since } \]
\[L, k \neq 0 \]
There is no solution if \(k^2 \neq 0 \)

Case III. If \[-k^2 \rightarrow k^2 \neq 0 \rightarrow \]
\[T'' + 4k^2T = 0, \quad X'' + k^2X = 0 \rightarrow \]
\[T = A \cos 2kt + B \sin 2kt, \quad X = C \cos kx + D \sin kx. \]
\[U(x,t) = (A \cos 2kt + B \sin 2kt)(C \cos kx + D \sin kx) \]
\[U(0,t) = (A \cos 2kt + B \sin 2kt)(C) = 0 \]
\[\rightarrow c = 0, \text{ because } A \cos 2kt + B \sin 2kt \neq 0 \]
\[U(x,t) = (A \cos 2kt + B \sin 2kt) D \sin kx \]
\[U(L,t) = D \sin kL (A \cos 2kt + B \sin 2kt) = 0 \]
Since \(A \cos 2kt + B \sin 2kt \neq 0 \rightarrow D \sin kL = 0 \]
If \(D = 0 \rightarrow U = 0 \]
\[\rightarrow D \sin kL = 0 \iff kL = n\pi, \text{ where } n = 0 \pm 1 \pm 2 \pm ... \]
\[\iff k = \frac{n\pi}{L} \]
\[U(x,t) = D \sin n\pi x (A_n \cos 2 \frac{n\pi}{L} t + B_n \sin 2 \frac{n\pi}{L} t) \]
\[U(x,t) = (A_n \cos 2 \frac{n\pi}{L} t + B_n \sin 2 \frac{n\pi}{L} t) \sin n\pi x. \]

Where \(A_n = AD, \quad B_n = BD \)
\[U(x,t) = \sum_{n=1}^{\infty} U_n(x,t) \]

\[\sum_{n=1}^{\infty} U_n(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi}{L} t + B_n \sin \frac{n\pi}{L} t \right) \sin n\pi x. \]

\[U(x, 0) = f(x). \]

\[f(x) = \sum_{n=1}^{\infty} A_n \sin n\pi x. \]

\[U_t(x,0) = g(x), \]

\[g(x) = 2 \frac{\pi}{L} \sum_{n=1}^{\infty} B_n \left(n \sin n \pi x \right). \]

Problems

Find the solution of the following Partial Differential Equation:-

1. \[\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} = 0 \]

With boundary condition.

\[u(0, t) = 0, \ u(10, t) = 0, \text{ for all } t, \]

\[u(x, 0) = 50 \sin \left(\frac{3\pi}{2} x \right) + 20 \sin 2\pi x - 10 \sin 4\pi x. \]

2. \[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0 \]

With boundary condition.

\[u(0, y) = e^{2y}, \]

3. \[2 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \]

With boundary condition.

\[u(0, t) = 0, \ u(n, t) = 0, \text{ for all } t, \]

\[u(x, 0) = 2 \sin 3x - 5 \sin 4x. \]

4. \[\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} \]

With boundary condition.

(i) \[u(0, t) = 0, \ (ii) \ u(L, t) = 0, \text{ for all } t, L > 0 \]

(iii) \[u(x, 0) = f(x). \ (iv) \ \frac{\partial u}{\partial t} = g(x), \text{ at } t=0. \]

5. \[\frac{\partial^2 u}{\partial y^2} = 4 \frac{\partial^2 u}{\partial x^2} \]

With boundary condition.

(i) \[u(0, y) = 0, \ (ii) \ u(10, y) = 0, \text{ for all } y, \]

(iii) \[\frac{\partial u}{\partial y}(x,0) = 0, \text{ at } t=0. \]
(iv) \(u(x, 0) = 3\sin 2\pi x - 4\sin \frac{\pi}{2} x \).
13-Gauss Siedle Methods
14-Least Squares Approximations

Numerical Analysis
Solution of Non-Linear Equation
1-Newton-Raphson Method for Approximating

We use tangent to approximate the graph of \(y = f(x) \), near the point \(P(x_n, y_n) \), where
\(y_n = f(x_n) \), is small. Let \(x_{n+1} \) be the value of \(x \) where that tangent line crosses the \(x \)-axis.
Let tangent = The slope between \((x, y)\) and \((x_n, y_n)\), is
\[
f'(x_n) = \frac{y - y_n}{x - x_n} \quad \text{.. (1)}
\]
Since the tangent line crosses the \(x \)-axis, \(y = 0 \), and \(y_n = f(x_n) \), put in Eq (1) which becomes
\[
f'(x_n) = \frac{-f(x_n)}{x - x_n},
\]
\[
x - x_n = \frac{-f(x_n)}{f'(x_n)} \quad ,
\]
\[
x = x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{.. (2)}.
\]
Put \(x = x_{n+1} \) in Eq (2) gives
\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{.. (3)}
\]
Eq (3) called Newton-Raphson Method, can using this method by the following
1-Give first approximating to root of equation \(f(x) = 0 \). A graph of \(y = f(x) \).
2-Use first approximating to get a second. The second to get a third, and so on. To go from \(n \)th approximation \(x_n \) to the next approximation \(x_{n+1} \), by using Eq (3), where \(f'(x) \) the derivative of \(f \) at \(x_n \).

Example 1
Solve the following using Newton-Raphson Method
\[\frac{1}{x} + 1 = 0, \] start with \(x_0 = -0.5 \), error \(\% = 0.5 \% \)

Where \(e \% = \left| \frac{x_{n+1} - x_n}{x_{n+1}} \right| \times 100 \% \)

Sol

\[f(x) = \frac{1}{x} + 1, \]
\[x_0 = -0.5, \]
\[f'(x_n) = -\frac{1}{x^2} \]
\[f(x_0) = \frac{1}{-0.5} + 1 = -1, \]
\[f'(x_0) = -\frac{1}{(-0.5)^2} = -4, \text{ from Eq (3)} \]
\[x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \]
\[x_1 = -0.5 - \frac{1}{-4} = -0.75. \]

By use \(e \% = \left| \frac{x_{n+1} - x_n}{x_{n+1}} \right| \times 100 \% \) as

\[e \% = \left| \frac{-0.75 - (-0.5)}{-0.75} \right| \times 100 \% \]
\[e \% = 33\% \]

By use same of new of \(x_1 \) in Eq (3) as
\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}, \text{ \(x_2 = -0.937 \), in same we can find \(x_3 \) and \(x_4 \)} \]

which use in the following table

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(f(x))</th>
<th>(f'(x_n))</th>
<th>(x_{n+1})</th>
<th>(e %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.5</td>
<td>-1</td>
<td>-4</td>
<td>-0.75</td>
<td>33%</td>
</tr>
<tr>
<td>1</td>
<td>-0.75</td>
<td>0.333</td>
<td>-1.77</td>
<td>-0.937</td>
<td>19%</td>
</tr>
<tr>
<td>2</td>
<td>-0.937</td>
<td>0.067</td>
<td>-1.137</td>
<td>-0.997</td>
<td>6%</td>
</tr>
<tr>
<td>3</td>
<td>-0.997</td>
<td>-0.003</td>
<td>-1.006</td>
<td>-1.000</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

To check the answer as:-
\[\frac{1}{-1} + 1 = -1 + 1 = 0. \]
Interpolation

2-Lagrange Approximation
Interpolation means to estimate amassing function value by taking a weighted average of known function value of neighboring point.

Linear Interpolation
Linear Interpolation uses a line segment passes through two distinct pointes \((x_0, y_0)\) and \((x_1, y_1)\) is the same as approximating a function \(f\) for which \(f(x_0) = y_0\) and \(f(x_1) = y_1\) by means of first-degree polynomial interpolation.

The slope between \((x_0, y_0)\) and \((x_1, y_1)\) is

\[
\text{Slope} = m = \frac{y_1 - y_0}{x_1 - x_0}
\]

The point-slope formula for the line
\[
y = m(x - x_0) + y_0
\]
\[y = P(x) = m(x-x_0) + y_0 = \frac{y_1 - y_0}{x_1 - x_0} (x-x_0) + y_0 \]

\[P_1(x) = y_0 \frac{x-x_1}{x_0-x_1} + y_1 \frac{x-x_0}{x_1-x_0} \]

Each term of the right side of (4) involve a linear factor hence the sum is a polynomial of degree \(\leq 1 \).

\[L_{1,0}(x) = \frac{x-x_1}{x_0-x_1}, \text{ and } L_{1,1}(x) = \frac{x-x_0}{x_1-x_0} \]

When \(x = x_0 \), \(L_{1,0}(x_0) = 1 \) and \(L_{1,1}(x_0) = 0 \). When \(x = x_1 \), \(L_{1,0}(x_1) = 0 \) and \(L_{1,1}(x_1) = 1 \).

In terms \(L_{1,0}(x) \) and \(L_{1,1}(x) \) in Eq (5) called Lagrange coefficient of polynomial hazed on the nodes \(x_0 \) and \(x_1 \).

\[P_1(x) = y_0 L_{1,0}(x_0) + y_1 L_{1,1}(x_1) \]

\[P_1(x) = \sum_{k=0}^{1} y_k L_{1k}(x) \).

Suppose that the ordinates \(y_k = f(x_k) \).

If \(P_1(x) \) is uses to approximante \(f(x) \) over intervalle \([x_0, x_1]\).

Example 2

Consider the graph \(y = f(x) = \cos(x) \) on \((x_0 = 0.0, \text{ and } x_1=1.2)\), to find the linear interpolation polynomial.

Sol

Now \(y_0 = f(x_0) = f(0.0) = \cos (0.0) = 1.0000 \), and \(y_1 = f(x_1) = f(1.2) = \cos (1.2) = 0.3624 \),

\[L_{1,0}(x) = \frac{x-x_1}{x_0-x_1} = \frac{x-1.2}{0.0-1.2} = \frac{x-1.2}{1.2}, \text{ and } \]

\[L_{1,1}(x) = \frac{x-x_0}{x_1-x_0} = \frac{x-0.0}{1.2-0.0} = \frac{x}{1.2}. \]

\[P_1(x) = \sum_{k=0}^{1} y_k L_{1k}(x) \).

\[P_1(x) = y_0 L_{1,0}(x_0) + y_1 L_{1,1}(x_1) \]

\[P_1(x) = -(1.0000) \frac{x-1.2}{1.2} + (0.3624) \frac{x}{1.2} \]

\[P_1(x) = -0.8333(x- 1.2) + 0.3020 x. \]

Quadratic Lagrange Interpolation
Interpolation of given points \((x_0, y_0), (x_1, y_1)\) and \((x_2, y_2)\) by a second degree polynomial \(P_2(x)\), which by Lagrange summation as

\[
P_2(x) = y_0 L_{1,0}(x) + y_1 L_{1,1}(x) + y_2 L_{1,2}(x).
\]

\[
P_2(x) = \sum_{k=0}^{2} y_k L_{1k}(x) = \sum_{k=0}^{2} f(x_k) L_{1k}(x).
\]

\[
L_{1,0}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)},
\]

\[
L_{1,1}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)};
\]

\[
L_{1,2}(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}
\]

approximating a function \(f\) for which \(f(x_0) = y_0\), and \(f(x_2) = y_2\) by means of second-degree polynomial interpolation.

Example 3

Using the nodes \((x_0=2, x_1=2.5\) and \(x_2=4)\), to find the second interpolation polynomial for \(f(x) = \frac{1}{x}\).

Sol

We must find

\[
L_{1,0}(x) = \frac{(x-2.5)(x-4)}{(2-2.5)(2-4)} = (x-6.5)x+10,
\]

\[
L_{1,1}(x) = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = \frac{(-4x + 24)x - 32}{3}
\]

\[
L_{1,2}(x) = \frac{(x-2)(x-2.5)}{(4-2)(4-2.5)} = \frac{(x-4.5)x + 5}{3}
\]

Now \(f(x_0) = f(2) = 0.5, f(x_1) = f(2.5) = 0.4,\) and \(f(x_2) = f(4) = 0.25\), and

\[
P_2(x) = \sum_{k=0}^{2} y_k L_{1k}(x) = \sum_{k=0}^{2} f(x_k) L_{1k}(x).
\]

\[
P_2(x) = y_0 L_{1,0}(x) + y_1 L_{1,1}(x) + y_2 L_{1,2}(x)
\]

\[
= 0.5[x-6.5)x+10] + 0.4[\frac{(-4x + 24)x - 32}{3}] +0.25 \frac{(x-4.5)x + 5}{3};
\]

\[
P_2(x) = [0.05 x-0.425]x +1.15
\]

\[
f(3) = \frac{1}{3}
\]

\[
P_2(3) = 0.325.
\]

\[
f(3) = P_2(3) = 0.325.
\]

Cubic Lagrange Interpolation
Interpolation of given points \((x_0, y_0), (x_1, y_1), (x_2, y_2)\) and \((x_3, y_3)\) by a third degree polynomial \(P_3(x)\), which by Lagrange summation as

\[
P_3(x) = y_0 L_{1,0}(x) + y_1 L_{1,1}(x) + y_2 L_{1,2}(x) + y_3 L_{1,3}(x),
\]

\[
P_3(x) = \sum_{k=0}^{3} y_k L_{1k}(x) = \sum_{k=0}^{3} f(x_k) L_{1k}(x).
\]

\[
L_{1,0}(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)},
\]

\[
L_{1,1}(x) = \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)},
\]

\[
L_{1,2}(x) = \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)},
\]

\[
L_{1,3}(x) = \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}.
\]

Approximating a function \(f\) for which \(f(x_0) = y_0\) and \(f(x_3) = y_3\) by means of third-degree polynomial interpolation.

Example 4

Consider the graph \(y = f(x) = \cos(x)\) on \((x_0 = 0.0, x_1 = 0.4, x_2 = 0.8\) and \(x_3 = 1.2)\), to find the cubic interpolation polynomial.

Sol

Now \(y_0 = f(x_0) = f(0.0) = \cos (0.0) = 1.0000,\)
\(y_1 = f(x_1) = f(0.4) = \cos (0.4) = 0.9210,\)
\(y_2 = f(x_2) = f(0.8) = \cos (0.8) = 0.6967,\) and
\(y_3 = f(x_3) = f(1.2) = \cos (1.2) = 0.3624,\)

\[
L_{1,0}(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} = \frac{(x-0.4)(x-0.8)(x-1.2)}{(0.0-0.4)(0.0-0.8)(0.0-1.2)},
\]
\(y_0 L_{1,0}(x) = -2.6042(x- 0.4)(x- 0.8)(x- 1.2),\)
\(y_1 L_{1,1}(x) = 7.1958(x- 0.0)(x- 0.8)(x- 1.2),\)
\(y_2 L_{1,2}(x) = -5.4430(x- 0.0)(x- 0.4)(x- 1.2)\)
\(y_3 L_{1,3}(x) = 0.9436(x- 0.0)(x- 0.4)(x- 0.8)\).

\[
P_3(x) = y_0 L_{1,0}(x) + y_1 L_{1,1}(x) + y_2 L_{1,2}(x) + y_3 L_{1,3}(x),
\]

\[
P_3(x) = \sum_{k=0}^{3} y_k L_{1k}(x) = \sum_{k=0}^{3} f(x_k) L_{1k}(x).
\]

\[
P_3(x) = y_0 L_{1,0}(x) + y_1 L_{1,1}(x) + y_2 L_{1,2}(x) + y_3 L_{1,3}(x),
\]
\(P_3(x) = -2.6042(x- 0.4)(x- 0.8)(x- 1.2) + 7.1958(x- 0.0)(x- 0.8)(x- 1.2) - 5.4430(x- 0.0)(x- 0.4)(x- 1.2) + 0.9436(x- 0.0)(x- 0.4)(x- 0.8).\)

In general case we construct, for each \(k = 0, 1...n\), we can write
\[L_{n,k}(x) = \begin{cases} 1 & \text{if } k = i \\ 0 & \text{if } k \neq i \end{cases} \]

Where
\[
L_{n,k}(x) = \frac{(x - x_0)(x - x_1)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)(x_k - x_1)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}
\]
or
\[
L_{n,k}(x) = \prod_{i=0}^{n} \frac{x - x_i}{x_k - x_i}, \quad i \neq k
\]

Problems
1-If \(y(1) = 12, y(2) = 15, y(5) = 25, \) and \(y(6) = 30. \) Find the four points Lagrange interpolation polynomial that takes some value of function \(y \) at the given points and estimate the value of \(y(4) \) at given points.
2-If \(y(1) = 12, y(2) = 15, y(5) = 25, \) and \(y(6) = 30. \) Find the four points Lagrange interpolation polynomial that takes some value of function \(y \) at the given points and estimate the value of \(y(4) \) at given points.
3-If \(f(1.0) = 0.7651977, f(1.3) = 0.6200860, f(1.6) = 0.4554022, f(1.9) = 0.2818186, \) and \(f(2.2) = 0.1103623. \) Use Lagrange polynomial to approximation to \(f(1.5) \).

Numerical Differentiation and Integration

Approximate Integration

Integration Equal Space

We begin our development of numerical integration by giving well-known numerical methods. If the function \(f(x) \) such a nature that
\[
\int_{a}^{b} f(x) \, dx
\]
cannot be evaluated by method of integration. In such cases, we use method to approximation to value. A geometric interpolation of
\[
\int_{a}^{b} f(x) \, dx
\]
is the area of the region bounded by the graph of \(y = f(x), x = a \)
and \(x = b, \) and \(y = 0. \) We can obtain an estimate of the value of integral by sketching the boundaries of the region and estimating the area of the enclosed region.

3-The Trapezoidal Rule
We shall obtain an approximation to \(\int_{a}^{b} f(x) \, dx \) by finding the sum of areas of trapezoids. We begin by dividing \([a, b]\) into \(n\) equal subintervals and constructed a trapezoid. Let the lengths of the ordinates drawn at the points of subdivision by \(f_0, f_1, \ldots, f_{n-1}, \) and \(f_n\) and the width of each trapezoid by \(\Delta x = \frac{b-a}{n}\), we find the sum of the area of the trapezoid is:-

\[
A = \frac{1}{2} [f_0 + f_1] \Delta x + \frac{1}{2} [f_1 + f_2] \Delta x + \ldots + \frac{1}{2} [f_{n-1} + f_n] \Delta x
\]

Or

\[
\int_{a}^{b} f(x) \, dx = \frac{\Delta x}{2} [f_0 + 2 f_1 + 2f_2 + \ldots + 2 f_{n-1} + f_n] \ldots (6)
\]

Eq (6) called The Trapezoidal Rule.

Example 5

Find \(\int_{1}^{1} \frac{1}{x^2 + 1} \, dx \), for \(n = 6\) by Trapezoidal rule

Sol

\(f(x) = \frac{1}{x^2 + 1} \), \(x_0 = 0, \ x_6 = 1\)

\(h = \frac{x_6 - x_0}{6} = \frac{1 - 0}{6} = \frac{1}{6} \)

\(x_0 = 0, \ f_0 = \frac{1}{0^2 + 1} = 1 \)

\(x_1 = x_0 + h \)

\(x_1 = \frac{1}{6}, \ f_1 = \frac{1}{(\frac{1}{6})^2 + 1} = 0.9729 \)

\(x_2 = \frac{2}{6}, \ f_2 = \frac{1}{(\frac{2}{6})^2 + 1} = 0.90 \)

\(x_3 = \frac{3}{6}, \ f_3 = \frac{1}{(\frac{3}{6})^2 + 1} = 0.8 \)

\(x_4 = \frac{4}{6}, \ f_4 = \frac{1}{(\frac{4}{6})^2 + 1} = 0.6923 \)
\[x_5 = \frac{5}{6}, f_5 = \frac{1}{\left(\frac{5}{6}\right)^2 + 1} = 0.5901 \]

\[x_6 = 1, f_6 = \frac{1}{(1)^2 + 1} = \frac{1}{2} = 0.5 \]

\[A = \frac{h}{2} \left[f_0 + 2(f_1 + f_2 + f_3 + f_4 + f_5) + f_6 \right] \]

\[A = \frac{1}{12} \left[1 + 2(0.9729 + 0.90 + 0.8 + 0.6923 + 0.5901) + 0.5 \right] \]

\[A = \frac{1}{12} \left[1 + 2(0.9729 + 0.90 + 0.8 + 0.6923 + 0.5901) + 0.5 \right] \]

\[A = 0.7842. \]

4-Simpson's Rule

We obtain another approximation to \(\int_a^b f(x) \, dx \). We dividing the interval from \(x = a \) to \(x = b \) into an even number of equal subintervals. We can drive the formula of Simpson by connected any three non-collinear points in the plane can be fitting with parabola and Simpson's Rule is based on approximating curves with parabola as shown in the following:-

Let the equation of parabola as

\[f = Ax^2 + Bx + C. \]

The area under it from \(x = -h \) to \(x = h \) as

\[\int_a^b f(x) \, dx = \int_{-h}^h (Ax^2 + Bx + C) \, dx = \left[A \frac{x^3}{3} + B \frac{x^2}{2} + Cx \right]_{-h}^h \]

\[= 2Ah^3 + 2Ch = \frac{h}{3}[2Ah^2 + 6C]. \]

Since the curve passes through the three points \((-h, f_0), (0, f_1)\) and \((h, f_2)\)

\[f_0 = Ah^2 - Bh + C \]

\[f_1 = C \]

\[f_2 = Ah^2 + Bh + C. \]

From above equation can see that

\[C = f_1 \]

\[Ah^2 - Bh = f_0 - f_1 \]

\[Ah^2 + Bh = f_2 - f_1 \]

\[Ah^2 = f_0 + f_2 - 2f_1. \]

Now the area \(\int_a^b f(x) \, dx \) in terms of ordinates \(f_0, f_1 \) and \(f_2 \), we have

\[\int_a^b f(x) \, dx = \frac{h}{3} \left[2Ah^2 + 6C \right]. = \frac{h}{3} \left[f_0 + f_2 - 2f_1 + 6f_1 \right], \text{ or} \]

\[\int_a^b f(x) \, dx = \frac{h}{3} \left[2Ah^2 + 6C \right]. \]
\[\int_{a}^{b} f(x) \, dx = \frac{h}{3} [f_0 + 4f_1 + f_2] \] ……………………………. (7)

Eq (7) called **Simpson's Rule of two intervals** [the with 2h]. Now in general to even number of equal subintervals by pass a parabola through \([f_0, f_1\text{and } f_2]\), another through \([f_2, f_3\text{and } f_4]\)…through \([f_{n-2}, f_{n-1}\text{and } f_n]\).

We then find the sum of the areas under the parabolas.

\[\int_{a}^{b} f(x) \, dx = \frac{h}{3} [f_0 + 4f_1 + f_2] + \frac{h}{3} [f_2 + 4f_3 + f_4] + \ldots + \frac{h}{3} [f_{n-2} + 4f_{n-1} + f_n] \]

Where \(h = \frac{b-a}{n} \), and \(n = \text{even} \).

And the truncation error for Simpson's rule is:-

\[e_s = \frac{(b-a)^5}{180n^4} f^{(4)}(c) = \frac{(b-a)^4}{180} f^{(4)}(c) \]

Example 6

Use **Simpson's rule** to evaluate \(\int_{0}^{1} \frac{1}{x^2 + 1} \, dx \), for \(n = 6 \).

Sol

\(f(x) = \frac{1}{x^2 + 1} \), \(x_0 = 0, x_6 = 1 \)

\(h = \frac{x_6 - x_0}{h} = \frac{1 - 0}{6} = \frac{1}{6} \)

\(x_0 = 0, f_0 = \frac{1}{0^2 + 1} = 1 \)

\(x_1 = x_0 + h \)

\(x_1 = \frac{1}{6}, f_1 = \frac{1}{(\frac{1}{6})^2 + 1} = 0.9729 \)

\(x_2 = x_1 + h \)

\(x_2 = \frac{1}{6} + \frac{1}{6} = \frac{2}{6} \)

\(f_2 = \frac{1}{(\frac{2}{6})^2 + 1} = 0.90 \)

\(x_3 = \frac{3}{6}, f_3 = \frac{1}{(\frac{3}{6})^2 + 1} = 0.8 \)
x₄ = \frac{4}{6}, f₄ = \frac{1}{(\frac{4}{6})^2 + 1} = 0.6923

x₅ = \frac{5}{6}, f₅ = \frac{1}{(\frac{5}{6})^2 + 1} = 0.5901

x₆ = 1, f₆ = \frac{1}{(1)^2 + 1} = \frac{1}{2} = 0.5

A = \frac{h}{3} [f₀ + 4f₁ + 2f₂ + 4f₃ + 2f₄ + 4f₅ + f₆]

A = \frac{1}{12} [1 + 4(0.9729) + 2(0.90) + 4(0.8) + 2(0.6923) + 4(0.5901) + 0.5]

A = 0.78593.

5-Simpson's (3/8) Rule

If f(x) approximated by polynomial of higher degree then an accurate approximation in computing the area so if the interval divided into n subinterval that (n is odd number divided by 3) and by calculating the area of three strips by approximating f(x) by a cubic polynomial as in Simpson's Rule. And for the n formulas we obtain the three eight rule

\[\int_a^b f(x) \, dx = \frac{3h}{8} [f_a + 3f₁ + 3f₂ + 2f₃ + 3f₄ + 3f₅ + 2f₆ + \ldots + 3f_{n-2} + 3f_{n-1} + f_b]. \]

Where h = \frac{b-a}{n}, and n = odd

And the truncation error is:

\[e_r = \frac{(b-a)^5}{90} f^{(4)}(c). \]

Example 7

Use Simpson's 3/8 rule to evaluate \[\int_0^1 x^4 \, dx, \] for n = 6.

Sol

f(x) = x^4, x₀ = 0, x₆ = 1

h = \frac{b-a}{n} = \frac{x₆ - x₀}{6} = \frac{1 - 0}{6} = \frac{1}{6}

x₀ = 0, f₀ = (x₀)^4 = (0)^4 = 0

x₁ = x₀ + h

x₁ = \frac{1}{6}, f₁ = \left(\frac{1}{6}\right)^4 = 0.00077

x₂ = x₁ + h

x₂ = \frac{1}{6} + \frac{1}{6} = \frac{2}{6},
\(f_2 = \left(\frac{2}{6} \right)^4 = 0.01234 \)

\(x_3 = \frac{3}{6}, \quad f_3 = \left(\frac{3}{6} \right)^4 = 0.06251 \)

\(x_4 = \frac{4}{6}, \quad f_4 = \left(\frac{4}{6} \right)^4 = 0.1975 \)

\(x_5 = \frac{5}{6}, \quad f_5 = \left(\frac{5}{6} \right)^4 = 0.482253 \)

\(x_6 = 1, \quad f_6 = \left(\frac{6}{6} \right)^4 = 1.0 \)

\[
\int_a^b f(x) \, dx = \frac{3h}{8} [f_a + 3f_1 + 3f_2 + 2f_3 + 3f_4 + 3f_5 + f_6].
\]

\[
A = \frac{3h}{8} [f_a + 3(f_1 + f_2 + f_4 + f_5) + 2f_3 + f_6].
\]

\(A = 0.2002243. \)

Problems

1. Approximate \(\int_0^1 4x^3 \, dx \), by the trapezoidal rule and by the Simpson's rule, with \(n = 6 \).
2. Approximate each of the integrals in the following problems with \(n = 4 \), by
 (i) The trapezoidal rule and (ii) The Simpson's rule.
 Compare your answers with
 (a) The exact value in each case.
 (b) Use the error in terms in Trapezoidal rule.
 (c) Use the error in terms in Simpson's rule.

(1) \(\int_0^2 x^2 \, dx \)

(2) \(\int_0^2 x^2 \, dx \)

(3) \(\int_0^2 x^4 \, dx \)

(4) \(\int_1^4 \frac{1}{x^2} \, dx \)

(5) \(\int_1^4 \sqrt{x} \, dx \)
Solutions of Ordinary Differential Equation

Numerical Differentiation

Let \(f(x, y) \) be a real valued function of two variables defined for \((a \leq x \leq b) \), and all real value of \(y \).

6-Euler Method

The Step by Step Methods

This starts from
\[y_1 = y(y_0), \]
and compute an approximate value \(y_1 \) of the solution at \(y \) for
\[y'(x) = f(x, y(x)) \]
at
\[x_1 = x_0 + h, \]
in second step computes the value \(y_2 \) of solutions at
\[x_2 = x_1 + h \]
where \(h \) is fixed increment, in each step the computation are done by the same formula suggested by Taylor series
\[
y(x + h) = y(x) + h y'(x) + \frac{h^2}{2} y''(x) + \frac{h^3}{6} y'''(x) + \ldots \]
\[
y'(y) = f(x, y(x)), \quad y''(x) = f'(x, y(x)) + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \quad y'\]
\[
\therefore (x + h) = y(x) + h y'(x) + \frac{h^2}{2} y''(x) + \frac{h^3}{3} y'''(x) + \ldots
\]
For small \(h \) and neglected terms of \(h^2, h^3 \ldots \)
\[y(x + h) = y(x) + h f(x, y) \]
y_1 = y_0 + h f(x_0, y_0),
y_2 = y_1 + h f(x_1, y_1),
\ldots
\]
y_{n+1} = y_n + h f(x_n, y_n).

Which called Euler's method for first order.

Example 8

Use Euler's method to solve the D. E
\[\frac{dy}{dx} = x^2 + 4x - \frac{y}{2}, \] with, \(x_0 = 0 \) \(y_0 = 4 \), for \(x = 0 \) to \(x_0 = 0.2 \), \(h = 0.05 \) work to (4D).

Sol

\[f(x, y) = \frac{dy}{dx} = x^2 + 4x - \frac{y}{2} \]

\[y_{n+1} = y_n + h f(x_n, y_n). \]

\[n = 0, x_0 = 0, y_0 = 4 \]

\[y_1 = y_0 + h f(x_0, y_0). \]

\[y_1 = 4 + 0.05 f(0, 4). \]

\[y_1 = 4 + 0.05 \left[0^2 + 4 \cdot 0 - \frac{4}{2} \right]. \]

\[y_1 = 4 - 0.1 \]

\[y_1 = 3.9 \]

\[x_1 = x_0 + h \]

\[x_1 = 0 + 0.05 \]

\[x_1 = 0.05 \]

\[y_2 = y_1 + h f(x_1, y_1). \]

\[y_2 = 3.9 + 0.05 \left[(0.05)^2 + 4 \cdot 0.05 - \frac{3.9}{2} \right]. \]

\[y_2 = 3.81 \]

\[x_2 = 0.05 + 0.05 = 0.10 \]

\[x_3 = 0.15, y_3 = 3.73 \]

\[x_4 = 0.20, y_4 = 3.67 \]

\[x_5 = 0.25, y_5 = 3.37. \]

7-Modified Euler Method (Euler Trapezoidal Method)

The Modified Euler Method gives from modified the value of \(y_{n+1} \) at point \((x_{n+1}) \) by gives the new value \(y_{n+1} \) by the following method

\[x_1 = x_0 + h \]

\[y^{(0)}_1 = y_0 + h f(x_0, y_0). \]

\[y^{(1)}_1 = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y^{(0)}_1) \right], \]

\[y^{(2)}_1 = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y^{(1)}_1) \right] \]

\[\cdots \cdots \cdots \]

\[y^{(r+1)}_1 = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y^{(r)}_1) \right], \]

we can go to five iteration.

Example 9

Use Euler's **Modified** method to solve the D. E

\[\frac{dy}{dx} + \frac{y}{2} = x^2 + 4x, \] with, \(y = 4 \), for \(x = 0 \) to \(x = 0.2 \), work to (3D).
Step 1

\[f(x, y) = x^2 + 4x - \frac{y}{2} \]

\[y^{(0)}_1 = y_0 + h f(x_0, y_0). \]

\(n = 0, x_0 = 0, y_0 = 4 \)

\[y_1 = y_0 + h f(x_0, y_0). \]

\[y_1 = 4 + 0.05 f(0, 4). \]

\[y^{(0)}_1 = 4 + 0.05 \left[0^2 + 4 \times 0 - \frac{4}{2} \right]. \]

\[y^{(0)}_1 = 3.9 \]

\[y^{(1)}_1 = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y^{(0)}_1) \right], \]

\[= 4 + \frac{0.05}{2} \left[-\frac{4}{2} + (-0.05)^2 + 4(0.05) - \frac{1}{2} \times 3.9 \right] = 3.906 \]

\[y^{(1)}_1 = 3.906. \]

\[y^{(2)}_1 = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y^{(1)}_1) \right] \]

\[= 4 + \frac{0.05}{2} \left[-\frac{4}{2} + (-0.05)^2 + 4(0.05) - \frac{1}{2} \times 3.906 \right] = 3.906 \]

\[y^{(2)}_1 = 3.906 \]

Step 2

\[x_2 = x_1 + h = 0.05 + 0.05 = 0.05 + 0.1 \]

\[y^{(0)}_2 = y_1 + h f(x_1, y_1). \]

\(n = 1, x_1 = 0.05, y_1 = 3.906 \)

\[y^{(0)}_2 = y_1 + h f(x_1, y_1). \]

\[= 3.906 + 0.05 \left[(0.05)^2 + 4(0.05) - \frac{1}{2} \times 3.906 \right] = 3.912 \]

\[y^{(0)}_2 = 3.912 \]

\[y^{(1)}_2 = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y^{(0)}_2) \right], \]

\[= 3.906 + \frac{0.05}{2} \left[(0.05)^2 + 4(0.05) - \frac{1}{2} \times 3.906 + (0.1)^2 + 4(0.1) - \frac{1}{2} \times 3.91 \right] = 3.868 \]

\[y^{(1)}_2 = 3.868. \]

\[y^{(2)}_2 = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y^{(1)}_2) \right] \]

\[= 3.906 + \frac{0.05}{2} \left[(0.05)^2 + 4(0.05) - \frac{1}{2} \times 3.906 + (0.1)^2 + 4(0.1) - \frac{1}{2} \times 3.868 \right] = 3.824 \]

\[y^{(2)}_2 = 3.824. \]
\[y^{(3)}_2 = y_1 + \frac{h}{2} \left[f(x_1, y_1). + f(x_2, y^{(2)}_2) \right] \]

\[= 3.906 + \frac{0.05}{2} \left[(0.15)^2 + 4(0.15) - \frac{1}{2} \otimes 3.825 \right] = 3.825 \]

\[y^{(3)}_2 = 3.825. \]

Step 3

\[x_3 = x_2 + h = 0.1 + 0.05 = 0.15 \]

\[n = 2, \quad x_2 = 0.1, \quad y_2 = 3.825 \]

\[y^{(0)}_3 = y_2 + h f(x_2, y_2). \]

\[= 3.825 + 0.05[(0.1)^2 + 4(0.1) - \frac{1}{2} \otimes 3.825] = 3.750 \]

\[y^{(0)}_3 = 3.750 \]

\[y^{(1)}_3 = y_2 + \frac{h}{2} \left[f(x_2, y_2). + f(x_3, y^{(0)}_3) \right], \]

\[= 3.756 + \frac{0.05}{2} \left[(0.1)^2 + 4(0.1) - \frac{1}{2} \otimes 3.756 \right] = 3.756 \]

\[y^{(1)}_3 = 3.756. \]

In same way we find

\[y^{(2)}_3 = 3.756. \]

Step 4

\[x_4 = x_3 + h = 0.15 + 0.05 = 0.2 \]

\[n = 3, \quad x_3 = 0.15, \quad y_3 = 3.756 \]

\[y^{(0)}_4 = y_3 + h f(x_3, y_3). \]

\[= 3.756 + 0.05[(0.15)^2 + 4(0.15) - \frac{1}{2} \otimes 3.756] = 3.693 \]

\[y^{(0)}_4 = 3.693 \]

\[y^{(1)}_4 = y_3 + \frac{h}{2} \left[f(x_3, y_3). + f(x_4, y^{(0)}_4) \right], \]

\[= 3.699 + \frac{0.05}{2} \left[(0.15)^2 + 4(0.15) - \frac{1}{2} \otimes 3.693 \right] = 3.699 \]

\[y^{(1)}_4 = 3.699. \]

\[y^{(2)}_4 = y_3 + \frac{h}{2} \left[f(x_3, y_3). + f(x_4, y^{(1)}_4) \right], \]
\[3.756 + \frac{0.05}{2} \left[(0.15)^2 + 4(0.15) \cdot \frac{1}{2} \right] 3.756 + (0.2)^2 + 4(0.2) \cdot \frac{1}{2} = 3.699 \]

\[y^{(2)} = 3.699. \]

The following table gives the above resulted of \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0.05</td>
<td>3.906</td>
</tr>
<tr>
<td>0.1</td>
<td>3.825</td>
</tr>
<tr>
<td>0.15</td>
<td>3.756</td>
</tr>
<tr>
<td>0.2</td>
<td>3.699</td>
</tr>
</tbody>
</table>

Problems

Apply Euler’s methods to the following initials value problems.
Do 5 steps. Solve the problem exactly. Compute the errors to see that the method is too inaccurate for Practical purposes

(1) \(y' + 0.1y = 0 \) with \(y(0) = 2, h = 0.1 \).

(2) \(y' = \frac{\pi}{2} \sqrt{1 - y^2} \), with \(y(0) = 0, h = 0.1 \).

(3) \(y' + 5x^4 y^2 = 0 \) with \(y(0) = 1, h = 0.2 \).

(4) \(y' = (y + x)^2 \) with \(y(0) = 1, h = 0.1 \).

Find the exacted solution and the error

(5) \(y' + 2x y^2 = 0 \) with \(y(0) = 1, h = 0.2 \).

(6) \(y' = 2(1 + y^2) \), with \(y(0) = 0, h = 0.5 \).

(7) Use Euler’s methods to find numerical solution of the following d. e.

(8) \(y' = 4x + x^2 - \frac{1}{2} y \), with \(y(0) = 4, h = 0.05 \), find to 3-decimal.

8-Runge Kutta Method

When

\[
\frac{dy}{dx} = f(x, y)
\]

\[
\therefore y_{n+1} = y_n + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]
\]

Where

\[k_1 = h f(x_n, y_n). \]

\[k_2 = h f(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}). \]

\[K_3 = h f(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}). \]

\[K_4 = h f(x_n + h, y_n + k_3). \]
Where h and (x_n, y_n) are given.

Example 10
Use Runge Kutta Method to solve the D.E

$$\frac{dy}{dx} = x + y, \text{ with } x_0 = 0, y_0 = 1, \text{ with } h = 0.1 \text{ work to (4D).}$$

Sol

$$f(x, y) = \frac{dy}{dx} = x + y$$

$$y_1 = y_0 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$k_1 = h \ f(x_0, y_0).$$

$$n = 0, \ x_0 = 0, \ y_0 = 1$$

$$k_1 = 0.1 \ f(0, 1) = 0.1[0 + 1] = 0.1$$

$$k_1 = 0.1$$

$$k_2 = h \ f(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}).$$

$$= 0.1 \ f(0 + \frac{0.1}{2}, 1 + \frac{0.1}{2}) = 0.1[0.05 + 1.05]$$

$$K_2 = 0.11.$$

$$K_3 = h \ f(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}) = 0.1 \ f(0.05, 1 + \frac{0.11}{2})$$

$$= 0.1[0.05 + 1.055]$$

$$k_3 = 0.1105.$$

$$K_4 = h \ f(x_0 + h, y_0 + k_3) = 0.1[0.1, 1.1105]$$

$$= 0.1[0.1, 1.1105]$$

$$K_4 = 0.12105.$$

$$y_1 = 1 + \frac{1}{6} [0.1 + 2 \times 0.11 + 2 \times 0.1105 + 0.12105],$$

$$y_1 = 1.11034$$

$$y_2 = y_1 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$k_1 = h \ f(x_1, y_1).$$

$$n = 1, \ x_1 = x_0 + h = 0 + 0.1 = 0.1, \ y_1 = 1.11034$$

$$k_1 = 0.1 \ f(0.1, 1.11034) = 0.1[0.1 + 1.11034] = 0.12103$$

$$k_1 = 0.12103$$

$$k_2 = h \ f(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}).$$

$$= 0.1 \ f(0.1 + \frac{0.1}{2}, 1.11034 + \frac{0.1}{2}) = 0.13208$$

$$K_2 = 0.13208.$$

$$K_3 = 0.132638.$$

$$K_4 = 0.1442978.$$
y_2 = 1.24306.
\therefore (x_2, y_2) = (0.2, 1.24306).

9-Runge-Kutta-Merson Method

The problem of Runge Kutta Method is not compute an approximate decimal error [Rounding Error or Truncation Error], we think Runge-Kutta-Merson Method give the approximate error of this problem at any step as see in the following:-

\[y_{n+1} = y_n + \frac{1}{6} [k_1 + 4k_4 + k_5], \]

\[k_1 = h f(x_n, y_n), \]

\[k_2 = h f(x_n + \frac{h}{3}, y_n + \frac{k_1}{3}), \]

\[K_3 = h f(x_n + \frac{h}{3}, y_n + \frac{k_1}{6} + \frac{k_2}{6}), \]

\[K_4 = h f(x_n + \frac{h}{2}, y_n + \frac{k_1}{8} + \frac{3k_3}{8}), \]

\[K_5 = h f(x_n + h, y_n + \frac{k_1}{2} - \frac{3k_3}{2} + 2k_4). \]

We compute the error as

\[\text{Error} = \frac{1}{30}[2k_1 - 9k_3 + 8k_4 - k_5]. \]

Example 11

Use Runge-Kutta-Merson Method to solve the D. E

\[\frac{dy}{dx} = x + y, \text{ with } x_0 = 0, y_0 = 1, \text{ for } x = 0 \text{ to } x_0 = 1.0, \text{ with } h = 0.1 \text{ work to (4D).} \]

Sol

\[f(x, y) = \frac{dy}{dx} = x + y \]

\[k_1 = h f(x_n, y_n), \]

\[n = 0, x_0 = 0, y_0 = 1 \]

\[k_1 = h f(0, 1) = 0.1[0 + 1] = 0.1 \]

\[k_1 = 0.1 \]

\[k_2 = h f(x_n + \frac{h}{3}, y_n + \frac{k_1}{3}), \]

\[= h f(0 + \frac{0.1}{3}, 1 + \frac{0.1}{3}). \]

\[= h f(0.113, 1.0333) = 0.1[0.113 + 1.0333] \]

\[K_2 = 0.1067 \]

\[K_3 = h f(0 + \frac{0.1}{3}, 1 + \frac{0.1}{6} + \frac{0.1067}{6}), \]
= h f(0.0333+ 1.0344),
= 0.1[0.0333+ 1.0344]= 0.1068.

K_4 = h f(x_n+ \frac{h}{2}, y_n+ \frac{k_1}{8} + \frac{3k_3}{8}).
= h f(0 + \frac{0.1}{2}, 1+\frac{0.1}{8} + \frac{3(0.1068)}{8}).
= h f(0.05, 1.0525) = 0.1[0.05+ 1.0525]. = 0.1103.

K_5 = h f(x_n+ h, y_n+ \frac{k_1}{2} + \frac{3k_3}{2} + 2k_4).
= 0.1 f(0+ 0.1, 1+\frac{0.1}{2} - \frac{3(0.1068)}{2} + 2(0.1103)).
= 0.1 f(0.1, 1.1103),
= 0.1[0.1, 1+1.1103]= 0.1210.

y_{n+1} = y_n+ \frac{1}{6}[k_1+ 4k_4 + k_5],
y_1 = y_0 + \frac{1}{6}[k_1+ 4k_4 + k_5],
y_1 = 1+ \frac{1}{6}[0.1+ 4(0.1103) + 0.1210],
y_1 = 1.1104.
x_1 = x_0 +h
x_1 = 0 +0.1 = 0.1
\therefore (x_1, y_1) = (0.1, 1.1104).

Error = \frac{1}{30} [2k_1-9k_4 + 8k_4 - k_5].
= \frac{1}{30} [2(0.1) -9 (0.1068)+ 8 (0.1103) - 0.1210].
\therefore Error = 6.667 \times 10^{-6}.

Problems
1-Apply Range –Kutta methods to the initials value problem, choosing h = 0.2, and computing(y_1 + y_2 + y_3+ y_4 + y_5) of
y’ = x+ y with y(0) = 0.
2- Use Range –Kutta methods to find numerical solution of the following d. e.
(a) y’ = 3x+ \frac{y}{2}, with y(0)= 1, h = 0.1. On interval (0 \leq x \leq 1)
(b) y’ = x+ y with y(0)= 1, in the range (0 \leq x \leq 1), with h = 0.1.
3- Comparison of Euler and Range –Kutta methods to solve
y’ = 2x^{-1}\sqrt{y– \ln x} + x^{-1}, with y(1) = 0, h = 0.1. On interval (1 \leq x \leq 1.8). And compute the error.
4- Solve problem (3) by classical Range–Kutta methods, with \(h = 0.4 \), determine the error, and compute with (3).

System of Linear Equation

Definition 1

Let the system of linear equation as

\[
\begin{align*}
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
\vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\end{align*}
\]

Can put the above system in matrix form as:-

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
= \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}
\]

Or

\[
AX = B,
\]

Where \(A = mxn \), matrix, \(a_{11}, a_{12}, \ldots, a_{mn} \) are constant, \(X = nx1 \), \(B = mx1 \) and, \(b_1, b_2, \ldots, b_m \), are constant \(x_1, x_2, \ldots, x_n \), variable.

Now we study the following methods {Cramer's Rule, Inverse Matrices, and Elimination Method}

10-Cramer's Rule
To solve the system (8) by Cramer's Rule, find determinate of A (|A|) such that |A| ≠ 0.

Let

\[
|A| = D = \begin{vmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{vmatrix}, \quad \text{and} \quad D_1 = \begin{vmatrix}
 b_1 & a_{12} & \cdots & a_{1n} \\
 b_2 & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_m & a_{m2} & \cdots & a_{mn} \\
\end{vmatrix}, \quad \ldots, \quad D_n = \begin{vmatrix}
 a_{11} & a_{12} & \cdots & b_1 \\
 a_{21} & a_{22} & \cdots & b_2 \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & b_m \\
\end{vmatrix},
\]

To solve system (8), we must find unknown \(x_1, x_2, \ldots, x_n\) as

\[
x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad \ldots, \quad x_n = \frac{D_n}{D}.
\]

11-Solution of Linear Equations by using Inverse Matrices

To solve the system (8) by **using Inverse Matrices** find determinate of A (|A|) such that |A| ≠ 0.

Or

\[AX = B,\]

Turing to the relation between the solution of linear equation and matrix inversion multiplying both sides by \(A^{-1}\) thus

\[A^{-1}[AX = B]\]

\[A^{-1}AX = A^{-1}B.\]

\[X = A^{-1}B.\]

This equation gives the values of the entire unknown X by a simple multiplication of matrix A by inverse of it matrix. As see in the following example

Example 12

Use the matrix inversion method; find the values of \((x_1, x_2, x_3)\) for the following set of linear algebraic equations:

\[
\begin{align*}
3x_1 - 6x_2 + 7x_3 &= 3 \\
4x_1 - 5x_3 &= 3 \\
5x_1 - 8x_2 + 6x_3 &= -4 \\
\end{align*}
\]

Solution

Put the system (9) in the following matrix form as

\[AX = B,\]
Where \(|A| = \begin{vmatrix} 3 & -6 & 7 \\ 4 & 0 & -5 \\ 5 & -8 & 6 \end{vmatrix} = 462 \neq 0 \).

We can find the inverse matrix of \(A (A^{-1}) \), by any method.

\[
A^{-1} = \begin{pmatrix}
0.26 & 0.14 & -0.2 \\
0.52 & 0.12 & -0.52 \\
0.48 & 0.04 & -0.36
\end{pmatrix},
\]

now we can see the following

\[
A^{-1} [AX = B] \rightarrow A^{-1} AX = A^{-1} B.
\]

X = \(A^{-1} B \).

\[
X = \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
0.26 & 0.14 & -0.2 \\
0.52 & 0.12 & -0.52 \\
0.48 & 0.04 & -0.36
\end{pmatrix} \begin{pmatrix}
3 \\
3 \\
-4
\end{pmatrix}
\]

\[
\therefore X = \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
2 \\
4 \\
3
\end{pmatrix},
\]

which gives the solution of system as \(x_1 = 2, x_2 = 4, x_3 = -4 \).

12-Gauss Elimination Method

We can use Gauss Elimination Method to solve the system of linear equation in (8), as see in the following example.

Example 13

\[
\begin{align*}
3x_1 - x_2 + 2x_3 &= 12 \\
3x_1 + 2x_2 + 3x_3 &= 11 \\
2x_1 - 2x_2 - x_3 &= 2
\end{align*}
\]

Solution

Put the system (10) in the following matrix form

\[
\begin{pmatrix}
3 & -1 & 2 : 12 \\
3 & 2 & 3 : 11 \\
2 & -2 & -1 : 12
\end{pmatrix}
\]

Where \(R_i (i = 1, 2, 3) \) row of system.

Step 1
By using
$$R_2 - R_1, \text{ and } 3R_3 - 2R_1$$
System (11) become

$$\begin{align*}
3 & -1 & 2 & : & 12 & \quad & R_1 \\
0 & 7 & 7 & : & 21 & \quad & R_2 \\
0 & -4 & -7 & : & -8 & \quad & R_3
\end{align*}$$
........................ (12)

Step 2

By using
$$7R_3 + 4R_2$$
System (11) become

$$\begin{align*}
3 & -1 & 2 & : & 12 & \quad & R_1 \\
0 & 7 & 7 & : & 21 & \quad & R_2 \\
0 & 0 & -21 & : & -42 & \quad & R_3
\end{align*}$$
........................ (13)

Step 3

From last system (13) we the following equation

$$\begin{align*}
3x_1 - x_2 - 2x_3 &= 12 \\
7x_2 + 7x_3 &= 21 \\
-21x_3 &= -42
\end{align*}$$

Which can easily to solve this system to find:

$$x_3 = 2, \ x_2 = 1, \ x_1 = 3.$$

13- Iterative Methods (Gauss Siedle Methods)

We can use Gauss Siedle Method to solve the system of linear equation in (8), see in the following example

$$\begin{align*}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3
\end{align*}$$
.. (14)

To solve the system (13) by using Gauss Siedle Method can see the following steps:-

Step 1

Re write system (13) as form

$$\begin{align*}
x_1 &= \left[b_1 - a_{12}x_2 - a_{13}x_3 \right] / \left(a_{11} \right) \\
x_2 &= \left[b_2 - a_{21}x_1 - a_{23}x_3 \right] / \left(a_{22} \right) \\
x_3 &= \left[b_3 - a_{31}x_1 - a_{32}x_2 \right] / \left(a_{33} \right)
\end{align*}$$
.. (15)

Step 2

Selected initial values of \(x_1, \ x_2\) and \(x_3\) put in system (16). For example (Let \(x_1 = x_2 = x_3 = 0\) initial values)
By using the new value of x_1, x_2 and x_3 as Step 2. Repeated Step 2 until no change of values of x_1, x_2 and x_3. As see in following example

Example 14

\[
\begin{align*}
5x_1 - 2x_2 + x_3 &= 4 \\
x_1 + 4x_2 - 2x_3 &= 3 \\
x_1 + 4x_2 + 4x_3 &= 17
\end{align*}
\]

\[\text{ (16)}\]

Solution

Step 1

Re write system (16) as form

\[
x_1 = \frac{4 + 2x_2 - x_3}{5} \quad \text{ (17)}
\]

\[
x_2 = \frac{3 - x_1 + 2x_3}{4} \quad \text{ (18)}
\]

\[
x_3 = \frac{17 - x_1 - 4x_2}{4} \quad \text{ (19)}
\]

Step 2

Selected initial values of x_1, x_2 and x_3 put in system (15). For example

(Let $x_1 = x_2 = x_3 = 0$ initial values).

Then get x_1 from Eq (17) \{by using $x_2 = x_3 = 0$ \} $\rightarrow x_1 = \frac{4}{5} = 0.8$, x_2 from Eq (18) \{by use new of $x_1 = 0.8$, $x_3 = 0$ \} gives $x_2 = 0.55$. Find x_3 from Eq (19) \{by use new of $x_1 = 0.8$, $x_2 = 0.55$ \} gives $x_3 = 0.55$.

Step 3

By using the new value of x_1, x_2 and x_3 as Step 2. Repeated Step 2 until no change of values of x_1, x_2 and x_3. As see in following values

<table>
<thead>
<tr>
<th>n</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.55</td>
<td>3.775</td>
</tr>
<tr>
<td>2</td>
<td>0.265</td>
<td>2.572</td>
<td>2.898</td>
</tr>
<tr>
<td>3</td>
<td>1.247</td>
<td>1.889</td>
<td>3.007</td>
</tr>
<tr>
<td>4</td>
<td>0.956</td>
<td>2.008</td>
<td>2.998</td>
</tr>
<tr>
<td>5</td>
<td>1.002</td>
<td>2.003</td>
<td>3.000</td>
</tr>
<tr>
<td>6</td>
<td>1.001</td>
<td>1.999</td>
<td>3.000</td>
</tr>
<tr>
<td>7</td>
<td>0.999</td>
<td>2.000</td>
<td>3.000</td>
</tr>
</tbody>
</table>

In general let k (where k integer number) denoted repeated to number of iteration. Then we can rewrite the system (15) as form:

\[
x_1^k = \frac{[b_1 - a_{12}x_2^{k-1} - a_{13}x_3^{k-1}]}{(a_{11})}
\]

\[
x_2^k = \frac{[b_2 - a_{21}x_1^k - a_{23}x_3^{k-1}]}{(a_{22})}
\]

\[
x_3^k = \frac{[b_3 - a_{31}x_1^k - a_{32}x_2^k]}{(a_{33})}.
\]

\[\text{ (20)}\]
Suppose that $a_{11} \neq 0$, $a_{22} \neq 0$, $a_{33} \neq 0$.

Problems

(a) Use Gauss Elimination Method to solve the following system of linear equations:

(1)
\[
\begin{align*}
3x_1 - x_2 + 3x_3 &= 12 \\
x_1 + x_2 + 3x_3 &= 11 \\
2x_1 - 2x_2 - x_3 &= 2
\end{align*}
\]

(2)
\[
\begin{align*}
2x_1 - x_2 + x_3 &= 1 \\
3x_1 - 2x_2 + x_3 &= 0 \\
5x_1 + x_2 - 2x_3 &= 9
\end{align*}
\]

(3)
\[
\begin{align*}
x_1 + 2x_3 &= 3 \\
2x_2 + 3x_3 &= 5 \\
2x_3 + x_4 &= 7 \\
x_1 + 4x_4 &= 5
\end{align*}
\]

(b) Use Gauss Siedle Method to solve the following system of linear equations:

(5)
\[
\begin{align*}
2x_1 + x_2 - 3x_3 &= 1 \\
5x_1 + 2x_2 - 6x_3 &= 5 \\
3x_1 - x_2 - 4x_3 &= 7
\end{align*}
\]

(6)
\[
\begin{align*}
2x_1 - 4x_2 + 6x_3 &= 5 \\
x_1 + 3x_2 - 7x_3 &= 2 \\
7x_1 + 5x_2 + 9x_3 &= 4
\end{align*}
\]

(7)
\[
\begin{align*}
-x_1 + x_2 + 2x_3 &= 2 \\
3x_1 - x_2 + x_3 &= 6 \\
-x_1 + 3x_2 + 4x_3 &= 4
\end{align*}
\]
\(\begin{align*}
(3) \quad & x_1 + 2x_3 = 3 \\
(4) \quad & x_1 + 2x_2 - 4x_3 = 4 \\
& 2x_2 + 3x_3 = 5 \\
& 5x_1 - 3x_2 - 7x_3 = 6 \\
& 2x_3 + x_4 = 7 \\
& 3x_1 - x_2 + x_3 = 6 \\
& x_1 + 4x_4 = 5 \\
& -x_1 + x_2 + 2x_3 = 2 \\
& -x_1 + 3x_2 + 4x_3 = 4 \\
\end{align*} \)

14-Least Squares Approximations

Let \(y \) denoted to real value, \(\bar{y} \) denoted to approximation value, and \(d \) denoted to deferent between the real value (\(y \)) from tables, and approximation value (\(\bar{y} \)), denoted to it in general as:

\[d_i = y_i - \bar{y}_i \text{, where } i = 1, 2 \ldots m. \]

Let there are \(m \) value \(y \) as \((y_1 \ldots y_m)\) corresponding to \(m \) value of \(x \) as \((x_1 \ldots x_m)\) gives \(m \) of different \(d \) as \((d_1 \ldots d_m)\), where

\[d_1 = y_1 - \bar{y}_1, \]
\[d_2 = y_2 - \bar{y}_2, \]
\[\ldots \]
\[d_m = y_m - \bar{y}_m. \]

The method of Least Squares Approximations using, the summation of difference \(\left(\sum_{i=1}^{m} d_i \right) \) at minimum. We square the difference because the negative sign.

\[\sum_{i=1}^{m} (d_i)^2 = \sum_{i=1}^{m} (y_i - \bar{y}_i)^2. \]

Let the relation between \(x \) and \(y \) at linear form as:-

\[\bar{y}_1 = a + bx_1, \]

The difference become as

\[d_i = y_i - a - bx_i, \text{ let} \]

\[q = \sum_{i=1}^{m} (d_i)^2, \text{ or} \]

\[q = \sum_{i=1}^{m} (d_i)^2 = \sum_{i=1}^{m} (y_i - a - bx_i)^2 \text{ or} \]

\[q = \sum_{i=1}^{m} (y_i - a - bx_i)^2 \text{ ... (21)} \]

There are only two unknown (\(a \) and \(b \)) in Eq (21).
Now if q at minimum, then first partial derivative of q (w.r.to) a and b must equal to zero as:

\[
\frac{\partial q}{\partial a} = \sum_{i=1}^{m} -2(y_i - a - bx_i) = 0
\]

\[
\frac{\partial q}{\partial b} = \sum_{i=1}^{m} -2x_i(y_i - a - bx_i) = 0.
\]

Re-write above equations as

\[
ma + (\sum_{i=1}^{m} x_i)b = \sum_{i=1}^{m} y_i \quad \text{... (22)}
\]

\[
(\sum_{i=1}^{m} x_i)a + (\sum_{i=1}^{m} x_i^2)b = \sum_{i=1}^{m} x_i y_i \quad \text{... (23)}.
\]

Put Eq (22 and 23) in the following matrix form

\[
\begin{pmatrix}
m \\ \sum_{i=1}^{m} x_i \\
\sum_{i=1}^{m} x_i^2
\end{pmatrix}
\begin{pmatrix}
a \\
\sum_{i=1}^{m} y_i \\
\sum_{i=1}^{m} x_i y_i
\end{pmatrix}
= \begin{pmatrix}
m \\ \sum_{i=1}^{m} x_i \\
\sum_{i=1}^{m} x_i^2
\end{pmatrix}
\begin{pmatrix}
y_i \\
\sum_{i=1}^{m} x_i y_i
\end{pmatrix} \quad \text{... (24)}
\]

We can find two unknown (a and b) in Eq (21). By using crammers rule as:

\[
\text{Let } D = \begin{vmatrix}
m & \sum_{i=1}^{m} x_i \\
\sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i^2
\end{vmatrix} \quad \text{... (25)}
\]

Where D the determinant such that $D \neq 0$, and

\[
D_1 = \begin{vmatrix}
\sum_{i=1}^{m} y_i & \sum_{i=1}^{m} x_i \\
\sum_{i=1}^{m} x_i y_i & \sum_{i=1}^{m} x_i^2
\end{vmatrix}, \quad D_2 = \begin{vmatrix}
m & \sum_{i=1}^{m} y_i \\
\sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i y_i
\end{vmatrix},
\]

\[
a = \frac{D_1}{D}, \quad b = \frac{D_2}{D}.
\]

Example 15

Find the following points to linear form $y = a + b x$, where
Solution

\[
\begin{pmatrix}
\begin{array}{cccc}
 x & y & x^2 & xy \\
 1 & 3 & 1 & 3 \\
 2 & 5 & 4 & 10 \\
 3 & 8 & 9 & 24 \\
 4 & 13 & 16 & 52 \\
 5 & 16 & 25 & 80 \\
 \end{array}
\end{pmatrix}
\]

(Sum 15 45 55 169)

From Eqs. (21 and 23)
5a + 15b = 45,
15a + 55b = 169,

\[D = \begin{vmatrix}
5 & 15 \\
15 & 55 \\
\end{vmatrix} = 50\]

\[a = \frac{D_1}{D} = \frac{\begin{vmatrix} 45 & 15 \\ 169 & 55 \end{vmatrix}}{50} = \frac{-6}{5}, \quad b = \frac{D_2}{D} = \frac{\begin{vmatrix} 5 & 45 \\ 15 & 196 \end{vmatrix}}{50} = \frac{17}{5}\]

\[y = \frac{-6}{5} + \frac{17}{5} x,\]

5y = -6 + 17x,

Example 16
Find the following points to linear form \(y = a e^{bx} \). Where

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7.5</td>
</tr>
</tbody>
</table>
\textbf{Sol}

\[\ln y = \ln(a e^{bx}) \rightarrow \ln y = \ln(a) + \ln(e^{bx}) \]
\[\rightarrow \ln y = \ln(a) + bx, \text{ compare with standard equation } Y = A + b X \]
\[Y = \ln y, \ln(a) = A, b = b, X = x. \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X-x)</th>
<th>(Y-\ln y)</th>
<th>(X_i^2)</th>
<th>(X_i \cdot Y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0.40547</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>1</td>
<td>0.91629</td>
<td>1</td>
<td>0.91629</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>2</td>
<td>1.25276</td>
<td>4</td>
<td>2.50553</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1.60944</td>
<td>9</td>
<td>4.82831</td>
</tr>
<tr>
<td>4</td>
<td>7.5</td>
<td>4</td>
<td>2.01490</td>
<td>16</td>
<td>8.05961</td>
</tr>
<tr>
<td>\text{Sum}=10</td>
<td>\text{10}</td>
<td>\text{6.19866}</td>
<td>\text{30}</td>
<td>\text{16.30974}</td>
<td></td>
</tr>
</tbody>
</table>

\[Y = A + b X \rightarrow ma + \left(\sum_{i=1}^{m} x_i \right)b = \sum_{i=1}^{m} y_i \]
\[\left(\sum_{i=1}^{m} x_i \right)a + \left(\sum_{i=1}^{m} x_i^2 \right)b = \sum_{i=1}^{m} x_i y_i \]

5a+10 b = 6.19866,
10a+30 b = 16.30974,

\[D = \begin{vmatrix} 5 & 10 \\ 10 & 30 \end{vmatrix} = 50 \]

\[a = \frac{D_1}{D}, \quad a = \frac{6.19866}{16.30974} = 0.39120, \quad b = \frac{D_2}{D} = \frac{5}{10} \frac{6.19866}{16.30974} = 0.39120. \]

\[A = \ln(a) \rightarrow e^A = e^{\ln a} \rightarrow e^A = a \rightarrow e^A = e^{0.45736}, \]
\[\rightarrow a = 1.5799, \quad b = 0.39120. \]
\[Y = 1.5799 e^{0.39120X} \]

\textbf{Reference}

2- A Course of Mathematics for Engineers and Scientists B. H Chirgwin.

4- Calculus Davis.