CHAPTER SIX

Application of integrals

Definite integrals:

If $f(x)$ is continuous in the interval $a \leq x \leq b$ and it is integrable in the interval then the area under the curve: –

$$\int_{a}^{b} f(x) \, dx = F(x)|_{a}^{b} = F(b) - F(a)$$

where $F(x)$ is any function such that $F'(x) = f(x)$ in the interval.

Some of the more useful properties of the definite integral are:

1) $\int_{a}^{b} c \, f(x) \, dx = c \int_{a}^{b} f(x) \, dx$, where c is constant.
2) $\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$
3) $\int_{a}^{b} f(x) \, dx = - \int_{b}^{a} f(x) \, dx$
4) Let $a < c < b$ then $\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$
5) $\int_{a}^{a} f(x) \, dx = 0$
6) If $f(x) \geq 0$ for $a \leq x \leq b$ then $\int_{a}^{b} f(x) \, dx \geq 0$
7) If $f(x) \leq g(x)$ for $a \leq x \leq b$ then $\int_{a}^{b} f(x) \, dx \leq \int_{a}^{b} g(x) \, dx$

Ex 1: – Evaluate the following definite integrals:

1) $\int_{2}^{6} \frac{dx}{x+2}$
2) $\int_{\pi/2}^{3\pi/2} \cos x \, dx$
3) $\int_{-\sqrt{3}}^{\sqrt{3}} \frac{dx}{1+x^2}$
4) $\int_{0}^{3/2} \frac{dx}{\sqrt{1-x^2}}$
5) $\int_{-2}^{4} e^{-x/2} \, dx$
6) $\int_{0}^{\pi} (\pi - x) \cdot \cos x \, dx$

Sol:

1) $\int_{2}^{6} \frac{dx}{x+2} = \ln(x+2)|_{2}^{6} = \ln(6+2) - \ln(2+2) = \ln 8 - \ln 4 = 3 \ln 2 - 2 \ln 2 = \ln 2$.
2) \[\int_{\pi/2}^{3\pi/2} \cos x \, dx = \sin x \bigg|_{\pi/2}^{3\pi/2} = \sin \left(\frac{3\pi}{2}\right) - \sin \left(\frac{\pi}{2}\right) = -1 - 1 = -2. \]

3) \[\int_{-\sqrt{3}}^{\sqrt{3}} \frac{dx}{1 + x^2} = \tan^{-1} x \bigg|_{-\sqrt{3}}^{\sqrt{3}} = \tan^{-1} \sqrt{3} - \tan^{-1}(-\sqrt{3}) = \frac{\pi}{3} - \left(-\frac{\pi}{3}\right) = \frac{2}{3} \pi \]

4) \[\int_{0}^{\sqrt{3}/2} \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x \bigg|_{0}^{\sqrt{3}/2} = \sin^{-1} 0 = \frac{\pi}{3} - 0 = \frac{\pi}{3} \]

5) \[\int_{-2}^{4} e^{-x^2} \, dx = -2e^{-x^2} \bigg|_{-2}^{4} = -2(e^{-2} - e) = 2(e - e^{-2}) \]

6) Let \(u = \pi - x \Rightarrow du = -dx \) & \(dv = \cos x \, dx \Rightarrow v = \sin x \)

\[\int_{0}^{\pi} (\pi - x) \cdot \cos x \, dx = (\pi - x) \sin x \bigg|_{0}^{\pi} + \int_{0}^{\pi} \sin x \, dx = (\pi - x) \sin x - \cos x \bigg|_{0}^{\pi} \]

\[= (\pi - \pi) \sin \pi - \cos \pi - ((\pi - 0) \sin 0 - \cos 0) = 0 - (-1) - (0 - 1) = 2 \]

Area between two curves:

Suppose that \(y_1 = f_1(x) \) and \(y_2 = f_2(x) \) define two functions of \(x \) that are continuous for \(a \leq x \leq b \) then the area bounded above by the \(y_1 \) curve, below by \(y_2 \) curve and on the sides by the vertical lines \(x = a \) and \(x = b \) is:

\[A = \int_{a}^{b} [f_1(x) - f_2(x)] \, dx \]

Ex2: – Find the area bounded by the \(x - axis \) and the curve: \(y = 2x - x^2 \)

Sol: –

\[\begin{align*}
 y &= 0 \quad \cdots \cdots (1) \\
 y &= 2x - x^2 \quad \cdots (2)
\end{align*} \]

\[\Rightarrow x(x - 2) = 0 \Rightarrow x = 0, 2 \]

The points of the intersection of the curve and the \(x - axis \) are (0,0) and (2,0).
(2,0) then the area bounded by \(x - \) axis and the curve is:

\[
\int_{0}^{2} (2x - x^2) \, dx = x^2 - \frac{x^3}{3} \bigg|_0^2 = 4 - \frac{8}{3} = \frac{4}{3}
\]

Ex 3: Find the area bounded by the \(y - \) axis and the curve: \(x = y^2 - y^3 \)

Sol:

\[
x = 0 \quad \ldots \ldots \ldots (1)
\]
\[
x = y^2 - y^3 \quad \ldots \ldots \ldots (2)
\]

\(\Rightarrow \) intersection points \((0,0), (0,1)\)

The area = \(A = \int_{0}^{1} (y^2 - y^3) \, dy = \frac{y^3}{3} - \frac{y^4}{4} \bigg|_{0}^{1} = \frac{1}{3} - \frac{1}{4} - (0 - 0) = \frac{1}{12} \)

Ex 4: Find the area bounded by the curve \(y = x^2 \) and the line \(y = x \).

Ex 5: Find the area bounded by the curves \(y = x^4 - 2x^2 \) and \(y = 2x^2 \)

Sol:

\[
y = x^4 - 2x^2 \quad \ldots \ldots (1)
\]
\[
y = 2x^2 \quad \ldots \ldots (2)
\]

\(\Rightarrow \) intersection points are \((0,0), (2,8), (-2,8)\)

The area = \(A = \int_{-2}^{0} (2x^2 - (x^4 - 2x^2)) \, dx + \int_{0}^{2} (2x^2 - (x^4 - 2x^2)) \, dx = 2 \int_{0}^{2} (4x^2 - x^4) \, dx = 2\left[\frac{4x^3}{3} - \frac{x^5}{5} \right]_0^2 = 2\left[\frac{4}{3} \cdot 8 - \frac{32}{5} - 0 \right] = \frac{128}{15} \)

Notice: We can use the double integration to calculate the area between two curves which bounded above by the curve \(y = f_2(x) \) below by \(y = f_1(x) \) on the left by the line \(x = a \) and on the right by \(x = b \), then:
$$A = \int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} dy \, dx$$

To evaluate above integrals we follow:

a) Integrating ∫ dy with respect to y and evaluating the resulting integral the limits y = f_{1}(x) and y = f_{2}(x), then:

b) Integrating the result of (a) with respect to x between the limits x = a and x = b.

If the area is bounded on the left by the curve x = g_{1}(y), on the right by x = g_{2}(y), below by the line y = c, and above by the line y = d, then it is better to integrate first with respect to x and then with respect to y.

$$A = \int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} dx \, dy$$

Ex 6: – Find the area of the triangular region in the first quadrant bounded by the y – axis and the curve y = sin x , y = cos x.

Sol:

\[y = \sin x \quad \ldots \ldots (1) \]
\[y = \cos x \quad \ldots \ldots (2) \]

\[\Rightarrow \sin x = \cos x \quad \therefore x = \frac{\pi}{4} \]

The area = \[A = \int_{0}^{\pi/4} \int_{\sin x}^{\cos x} dy \, dx = \int_{0}^{\pi/4} y|_{\sin x}^{\cos x} dx = \int_{0}^{\pi/4} (\cos x - \sin x) dx \]

\[= \sin x + \cos x|_{0}^{\pi/4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - (0 + 1) = \sqrt{2} - 1 = 0.414 \]

Ex 7: Calculate: \[\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx \, dy \]

Sol: We cannot solve the integration

\[\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx \, dy \], hence we reverse the order of integration as follow: –
\[
x = 1 \text{ and } y = 1 \\
x = y \quad y = 0
\]

\[
A = \int_0^1 \int_0^x \frac{\sin x}{x} \, dy \, dx = \int_0^1 \frac{\sin x}{x} \, y \bigg|_0^x \, dx = \int_0^1 \frac{\sin x}{x} (x - 0) \, dx = \int_0^1 \sin x \, dx \\
- \cos x \bigg|_0^1 = -(\cos 1 - \cos 0) = 1 - \cos 1
\]

Ex 8: Write an equivalent double integral with order of integration reversed for each integrals check your answer by evaluation both double integrals, and sketch the region.

1) \[\int_{-2}^{1} \int_{x^2+4x}^{3x+2} dy \, dx \]
2) \[\int_{-1}^{0} \int_{-2}^{1-x} dy \, dx + \int_{0}^{2} \int_{-x/2}^{1-x} dy \, dx \]

Volume by slicing and Rotation about an Axis:

volume = area \times \text{height}, \ v = A \cdot h

Volume of a solid of known integrable cross-section:

A(x) from x = a to x = b is the integral of A from a to b,

\[
v = \int_{a}^{b} A(x) \, dx
\]

Calculating the volume of a solid:

1) Sketch the solid and a typical cross-section.
2) Find a formula for A(x), the area of a typical cross-section.
3) Find the limits of integration.
4) Integrate A(x) using the fundamental theorem.
Ex: A pyramid 3m high has a square base that is 3m on a side. The cross-section of the pyramid perpendicular to the altitude x m down from the vertex is a square x m on a side. Find the volume of the pyramid?

Sol:

1) A sketch.
2) A formula for \(A(x) \).
 \[A(x) = x^2 \]
3) The limits of integration
 The square lies on the planes from \(x = 0 \) to \(x = 3 \)
4) Integrate to find the volume.
 \[v = \int_0^3 A(x) \, dx = \int_0^3 x^2 \, dx = \frac{x^3}{3} \bigg|_0^3 = 9 \]

Solids of revolution: The Disk Method:

\[A(x) = \pi (\text{radius})^2 = \pi [R(x)]^2 \]

\[v = \int_{-b}^{b} A(x) \, dx = \int_{-b}^{b} \pi \left(R(x) \right)^2 \, dx \]
 Revolution about x-axis

\[A(y) = \pi (\text{radius}) = \pi [R(y)]^2 \]

\[v = \int_{c}^{d} A(y) \, dy = \int_{c}^{d} \pi \left(R(y) \right)^2 \, dy \]
 Revolution about y-axis

Application of integrals
Examples:

1. The region between the curve $y = \sqrt{x}, 0 \leq x \leq 4$, and the x-axis is revolved about the x-axis to generate a solid. Find its volume?

 Sol: $v = \int_{a}^{b} \pi [R(x)]^2 \, dx$, \quad $R(x) = \sqrt{x}$.

 $v = \int_{0}^{4} \pi [\sqrt{x}]^2 \, dx = \pi \int_{0}^{4} x \, dx = \pi \left[\frac{x^2}{2} \right]_{0}^{4} = 8\pi$.

2. The circle $x^2 + y^2 = a^2$ is rotated about the x-axis to generate a sphere. Find its volume?

 Sol: We imagine the sphere cut into thin slices by planes perpendicular to the x-axis. The cross-sectional area at a typical x between
\(-a\) and \(a\) is:
\[A(x) = \pi y^2 = \pi(a^2 - x^2) \]

\[v = \int_{-a}^{a} A(x) \, dx = \int_{-a}^{a} \pi (a^2 - x^2) \, dx = \pi \left[a^2 x - \frac{x^3}{3} \right]_{-a}^{a} = \frac{4}{3} \pi a^3. \]

3. Find the volume of the solid generated by revolving the region between the \(y\)-axis and the curve \(x = \frac{2}{y}, 1 \leq y \leq 4\), about the \(y\)-axis?

Sol:

\[v = \int_{1}^{4} \pi [R(y)]^2 \, dy \]

\[v = \int_{1}^{4} \pi \left(\frac{2}{y} \right)^2 \, dy \]

\[v = 4\pi \int_{1}^{4} y^{-2} \, dy \]

\[v = 4\pi \left[-\frac{1}{y} \right]_{1}^{4} = 4\pi \left[\frac{3}{4} \right] = 3\pi \]

Application of integrals
4. Find the volume of the solid generated by revolving the region between the parabola \(x = y^2 + 1 \) and the line \(x = 3 \) about the line \(x = 3 \)?

Sol: \(R(y) = 3 - (y^2 + 1) \)

\[
R(y) = 3 - y^2 - 1 = 2 - y^2
\]

\[
v = \int_{-\sqrt{2}}^{\sqrt{2}} \pi [R(y)]^2 \, dy
\]

\[
v = \int_{-\sqrt{2}}^{\sqrt{2}} \pi [2 - y^2]^2 \, dy
\]

\[
v = \pi \int_{-\sqrt{2}}^{\sqrt{2}} [4 - 4y^2 + y^4] \, dy
\]

\[
v = \pi [4y - \frac{4}{3}y^3 + \frac{1}{5}y^5]_{-\sqrt{2}}^{\sqrt{2}}
\]

\[
v = \frac{64\pi\sqrt{2}}{15}
\]
Solids of Revolution: The Washer Method:

\(R(x) \): Outer radius.

\(r(x) \): Inner radius.

\[A(x) = \pi [R(x)]^2 - \pi [r(x)]^2 = \pi ([R(x)]^2 - [r(x)]^2). \]

\[
\nu = \int_a^b A(x) \, dx = \int_a^b \pi ([R(x)]^2 - [r(x)]^2) \, dx
\]

Examples:

1. The region bounded by the curve \(y = x^2 + 1 \) and the line \(y = x + 3 \) is revolved about the \(x \)-axis to generate a solid. Find the volume of the solid?

Sol:

Outer radius: \(R(x) = -x + 3 \)

Inner radius: \(r(x) = x^2 + 1 \)

\[x^2 + 1 = -x + 3 \]

\[x^2 + x - 2 = 0 \]
\((x + 2)(x - 1) = 0\)
\[x = -2 \text{ or } x = 1\]
\[v = \int_{-2}^{1} \pi([x + 3]^2 - [x^2 + 1]^2) \, dx\]
\[v = \pi \int_{-2}^{1} (8 - 6x - x^4 - x^2) \, dx\]
\[v = \pi \left(8x - 3x^2 - \frac{x^3}{3} - \frac{x^5}{5}\right)_{-2}^{1}\]
\[v = \frac{117\pi}{5}\]

2. The region bounded by the parabola \(y = x^2\) and the line \(y = 2x\) in the first quadrant is revolved about the \(y\) - axis to generate a solid. Find the volume of the solid?

Sol:
\(R(y) = \sqrt{y}, \ y = x^2 \Rightarrow x = \sqrt{y}\)
\[r(y) = \frac{y}{2}, \ y = 2x \Rightarrow x = \frac{y}{2}\]
\[x^2 = 2x \Rightarrow x^2 - 2x = 0\]
\[x(x - 2) = 0, \ x = 0 \ \text{or} \ x = 2\]
\[x = 0 \Rightarrow y = 2x \Rightarrow y = 0\]
\[x = 2 \Rightarrow y = 2x \Rightarrow y = 4\]
\[v = \int_{c}^{d} \pi([R(y)]^2 - [r(y)]^2) \, dy\]
\[
v = \int_{0}^{4} \pi \left(\left[\sqrt{y} \right]^2 - \left[\frac{y}{2} \right]^2 \right) dy
\]

\[
v = \pi \int_{0}^{4} \left(y - \frac{y^2}{4} \right) dy
\]

\[
v = \pi \left(\frac{y^2}{2} - \frac{y^3}{12} \right)_{0}^{4} = \frac{8}{3} \pi
\]

Volume by Cylindrical Shells:

The Shell Method:

The volume of the solid generated by revolving the region between the x – axis and the graph of a continuous function $y = f(x) \geq 0$, $L \leq a \leq x \leq b$, about a vertical line $x = L$ is

\[
v = \int_{a}^{b} 2\pi \left(\frac{\text{shell}}{\text{radius}} \right) \left(\frac{\text{shell}}{\text{height}} \right) dx
\]

The shell method gives the same answer as the washer method when both are used to calculate the volume of a region.

Examples: 1. The region bounded by the curve $y = \sqrt{x}$, the x – axis , and the line $x = 4$ is revolved about the y – axis to generate a solid.

Find the volume of the solid?

Sol:

\[
v = \int_{a}^{b} 2\pi \left(\frac{\text{shell}}{\text{radius}} \right) \left(\frac{\text{shell}}{\text{height}} \right) dx
\]

\[
v = \int_{0}^{4} 2\pi (x) (\sqrt{x}) dx = 2\pi \int_{0}^{4} x^{3/2} dx
\]

Application of integrals
\[v = 2\pi \left[\frac{2}{5} x^\frac{5}{2} \right]_0^4 = \frac{128}{5} \pi \]

2. The region bounded by the curve \(y = \sqrt{x} \), the \(x \)-axis, and the line \(x = 4 \) is revolved about the \(x \)-axis to generate a solid. Find the volume of the solid?

Sol:

\[v = \int_a^b 2\pi \left(\frac{\text{shell}}{\text{radius}} \right) \left(\frac{\text{shell}}{\text{height}} \right) dy \]

\[v = \int_0^2 2\pi (y)(4 - y^2)dy = 2\pi \int_0^2 (4y - y^3) dy \]
\[v = 2\pi \left[2y^2 - \frac{y^4}{4} \right]_0 = 8\pi \]

Length of Plane Curves:

Length of a Parametric Curve:

If a curve \(C \) is defined parametrically by \(x = f(t) \) and \(y = g(t) \), \(a \leq t \leq b \), where \(f' \) and \(g' \) are continuous and not simultaneously zero on \([a, b] \), and \(C \) is traversed exactly once as \(t \) increases from \(t = a \) to \(t = b \), then the length of \(C \) is the definite integral:

\[
L = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2} \, dt
\]

if \(x = f(t) \) & \(y = g(t) \)

Examples:

Application of integrals
1. Find the length of the circle of radius \(r \) defined parametrically by \(x = r \cos t \) and \(y = r \sin t \), \(0 \leq t \leq 2\pi \).

\[L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \]

\[L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \]

\[x = r \cos t \Rightarrow \frac{dx}{dt} = -r \sin t \]

\[y = r \sin t \Rightarrow \frac{dy}{dt} = r \cos t \]

\[\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (-r \sin t)^2 + (r \cos t)^2 = r^2 (\sin^2 t + \cos^2 t) = r^2 \]

\[L = \int_0^{2\pi} \sqrt{r^2} \, dt = [rt]_0^{2\pi} = 2\pi r \]

2. Find the length of the astroid?

\(x = \cos^3 t \), \(y = \sin^3 t \), \(0 \leq t \leq 2\pi \)

\[x = \cos^3 t \Rightarrow \left(\frac{dx}{dt}\right)^2 = 3 \cos^2 t (-\sin t)^2 = 9 \cos^4 t \sin^2 t \]

\[y = \sin^3 t \Rightarrow \left(\frac{dy}{dt}\right)^2 = 3 \sin^2 t (\cos t)^2 = 9 \sin^4 t \cos^2 t \]

\[\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{9 \cos^4 t \sin^2 t + 9 \sin^4 t \cos^2 t} = \sqrt{9 \cos^2 t \sin^2 t (\cos^2 t + \sin^2 t)} \]

\[= \sqrt{9 \cos^2 t \sin^2 t (\cos^2 t + \sin^2 t)} \] \(\cos^2 t + \sin^2 t = 1 \)

\[= 3 \cos t \sin t \] \(\cos t \sin t \geq 0 \)

\[= 3 \cos t \sin t \] \(0 \leq t \leq \pi/2 \)

Application of integrals
Length of first - quadrant portion = \(\int_0^{\pi/2} 3 \cos t \sin t \, dt \)

\[
sin 2t = 2 \cos t \sin t \Rightarrow \cos t \sin t = \frac{\sin 2t}{2}
\]

\[
\frac{3}{2} \int_0^{\pi/2} \sin 2t \, dt = -\frac{3}{2} \left[\frac{\cos 2t}{2} \right]_0^{\pi/2} = -\frac{3}{4} [\cos 2t]_0^{\pi/2} = 3/2
\]

The length of the astroid is four times this: \(4 \left(\frac{3}{2} \right) = 6 \).

Length of Curve \(y = f(x) \):

If \(f \) is continuously differentiable on the closed interval \([a, b]\), the length of the curve (graph) \(y = f(x) \) from \(x = a \) to \(x = b \) is:

\[
L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx
\]

\[
L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx
\]

Example:

Find the length of the curve?

\[
y = \frac{4\sqrt{2}}{3} x^{3/2} - 1 , \quad 0 \leq x \leq 1
\]

Sol:

\[
y = \frac{4\sqrt{2}}{3} x^{3/2} - 1 \Rightarrow \frac{dy}{dx} = \frac{4\sqrt{2}}{3} \cdot \frac{3}{2} x^{1/2} = 2\sqrt{2} x^{1/2}
\]

\[
\left(\frac{dy}{dx} \right)^2 = \left(2\sqrt{2} x^{1/2} \right)^2 = 8x
\]

\[
L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = \int_0^1 \sqrt{1 + 8x} \, dx
\]

\[
L = \int_0^1 (1 + 8x)^{1/2} \, dx = \frac{1}{8} \int_0^1 (1 + 8x)^{1/2} \, dx = \frac{1}{8} \left[(1 + 8x)^{3/2} \right]_0^1 = \frac{13}{6}
\]

Length of a curve \(x = g(y) \): Dealing with Discontinuities in \(dy/dx \)

If \(g \) is continuously differentiable on \([c, d]\), the length of the curve
$x = g(y)$ from $y = c$ to $y = d$ is:

$$L = \int_c^d \sqrt{1 + (g'(y))^2} \, dy$$

$$L = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$

Example:

Find the length of the curve $y = \left(\frac{x}{2}\right)^{2/3}$ from $x = 0$ to $x = 2$?

Sol:

$$\frac{dy}{dx} = \frac{2}{3} \left(\frac{x}{2}\right)^{-\frac{1}{3}} \left(\frac{1}{2}\right) = \frac{1}{3} \left(\frac{2}{x}\right)^{\frac{1}{3}}$$

is not defined at $x = 0$, so we cannot find the curve’s length with $y = f(x)$

$$\frac{dy}{dx}$$ fails to exist.

$$y = \left(\frac{x}{2}\right)^{2/3} \Rightarrow y^{3/2} = \frac{x}{2} \Rightarrow x = 2y^{3/2}$$

$$\frac{dx}{dy} = 2 \cdot \frac{3}{2} y^{1/2} = 3 \cdot y^{1/2}$$

$x = 0 \Rightarrow y = \left(\frac{x}{2}\right)^{2/3} \Rightarrow y = \left(\frac{0}{2}\right)^{2/3} \Rightarrow y = 0$

$x = 2 \Rightarrow y = \left(\frac{x}{2}\right)^{2/3} \Rightarrow y = \left(\frac{2}{2}\right)^{2/3} \Rightarrow y = 1 \quad 0 \leq y \leq 1$

$$L = \int_c^d \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dy = \int_0^1 \sqrt{1 + \left(3y^{\frac{1}{2}}\right)^2} \, dy = \int_0^1 \sqrt{1 + 9y} \, dy$$

$$L = \frac{1}{9} \int_0^1 (1 + 9y)^{1/2} \, 9 \, dy = \frac{1}{9} \cdot \left[\frac{2}{3} (1 + 9y)^{3/2}\right]_0^1 = \frac{2}{27} (10\sqrt{10} - 1) \approx 2.27$$

Areas of Surfaces of Revolution:

Surface Area for Revolution About the x – axis:

If the function $f(x) \geq 0$ is continuously differentiable on $[a, b]$, the area of the surface generated by revolving the curve $y = f(x)$ about the x – axis is:
\[s = \int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx \]

\[s = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]

Example: Find the area of the surface generated by revolving the curve

\[y = 2\sqrt{x} \, , \, 1 \leq x \leq 2 \] about the \(x \)–axis?

Sol:

\[s = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]

\[a = 1 \, , \, b = 2 \, , \, \quad y = 2\sqrt{x} \, , \quad \frac{dy}{dx} = \frac{1}{\sqrt{x}} \]

\[\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{1}{\sqrt{x}}\right)^2} = \sqrt{1 + \frac{1}{x}} = \frac{\sqrt{x+1}}{\sqrt{x}} \]

\[s = \int_1^2 2\pi 2\sqrt{x} \frac{\sqrt{x+1}}{\sqrt{x}} \, dx = 4\pi \int_1^2 \sqrt{x+1} \, dx = 4\pi \frac{2}{3} [x + 1^{3/2}]_1^3 \]

\[= \frac{8\pi}{3} (3\sqrt{3} - 2\sqrt{2}) \]

Surface Area for Revolution About the \(y \)–axis:

If the function \(g(y) \geq 0 \) is continuously differentiable on \([c,d]\), the area of the surface generated by revolving the curve \(x = g(y) \) about the \(y \)–axis is:

\[s = \int_c^d 2\pi g(y) \sqrt{1 + \left(g'(y)\right)^2} \, dy \]

\[s = \int_c^d 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy \]

Example: The line segment \(x = 1 - y \, , \, 0 \leq y \leq 1 \) , is revolved about the \(y \)–axis to generate the cone. Find its surface area?

Sol: \(c = 0 \, , \, d = 1 \, , \, \quad x = 1 - y \, , \quad \frac{dx}{dy} = -1 \)
\[\sqrt{1 + \left(\frac{dx}{dy} \right)^2} = \sqrt{1 + (-1)^2} = \sqrt{2} \]

\[s = \int_c^d 2\pi x \sqrt{1 + \left(\frac{dx}{dy} \right)^2} \, dy = \int_0^1 2\pi (1 - y) \sqrt{2} \, dy \]

\[s = 2\pi \sqrt{2} \left[y - \frac{y^2}{2} \right]_0 = 2\pi \sqrt{2} \left(1 - \frac{1}{2} \right) = \pi \sqrt{2} \, . \]

Surface Area of Revolution for Parametrized curves:

If a smooth curve \(x = f(t), y = g(t), \ a \leq t \leq b, \) is traversed exactly once as \(t \) increases from \(a \) to \(b \), then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows:

1. Revolution about the \(x \)–axis \((y \geq 0)\):
 \[
 s = \int_a^b 2\pi y \sqrt{\left(\frac{dx}{dy} \right)^2 + \left(\frac{dy}{dx} \right)^2} \, dt
 \]

2. Revolution about the \(y \)–axis \((x \geq 0)\):
 \[
 s = \int_a^b 2\pi x \sqrt{\left(\frac{dx}{dy} \right)^2 + \left(\frac{dy}{dx} \right)^2} \, dt
 \]

Example:

The standard parametrization of the circle of radius 1 centered at the point (0,1) in the \(xy \)–plane is \(x = \cos t, \ y = 1 + \sin t, \ 0 \leq t \leq 2\pi \) use this parametrization to find the area of the surface swept out by revolving the circle?

Sol:

\[
 s = \int_a^b 2\pi y \sqrt{\left(\frac{dx}{dy} \right)^2 + \left(\frac{dy}{dx} \right)^2} \, dt
\]

Application of integrals
\[a = 0 \, , \, b = 2\pi \]

\[y = 1 + \sin t \, \Rightarrow \frac{dy}{dt} = \cos t \]

\[x = \cos t \, \Rightarrow \frac{dx}{dt} = -\sin t \]

\[\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(-\sin t)^2 + (\cos t)^2} = \sqrt{1} = 1 \]

\[s = \int_a^b 2\pi (1 + \sin t) \cdot dt = 2\pi \int_0^{2\pi} (1 + \sin t) \, dt = 2\pi [t - \cos t]_0^{2\pi} = 4\pi^2 \]