CHAPTER NINE

Vector Analysis

Vector Analysis:

- Scalar: Quantities that are completely known or determined from their magnitude only like length and weight.

- Vector: Quantities that have magnitude and direction like velocity and force.

Component form:

A vector is directed line segment. The directed line segment \overrightarrow{AB} has initial point A and terminal point B; its length is denoted by $|\overrightarrow{AB}|$. Two vectors are equal if they have the same length and direction.

If v is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point (v_1, v_2), then the component form of v is $v = (v_1, v_2)$. $v = (x_2 - x_1, y_2 - y_1)$

If v is a three-dimensional vector equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3), then the component form of v
is \(\mathbf{v} = (v_1, v_2, v_3) \).

\[\mathbf{v} = (x_2 - x_1, y_2 - y_1, z_2 - z_1) \]

* Two vectors are equal if and only if and only if \(u_1 = v_1 \), \(u_2 = v_2 \), and \(u_3 = v_3 \).

* The magnitude or length of the vector \(\mathbf{v} = \overrightarrow{PQ} \) is the non-negative number

\[|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]

* The only vector with length 0 is the zero vector \(\mathbf{0} = (0,0) \) or \(\mathbf{0} = (0,0,0) \). This vector is also the only vector with no specific direction.

Ex1: Find the (a) component form and (b) length of the vector with initial point \(P(-3,4,1) \) and terminal point \(Q(-5,2,2) \).

Sol: (a) \(v_1 = x_2 - x_1 = -5 - (-3) = -2 \)

\(v_2 = y_2 - y_1 = 2 - 4 = -2 \)

\(v_3 = z_2 - z_1 = 2 - 1 = 1 \)

The component form of \(\overrightarrow{PQ} \) is \(\mathbf{v} = (-2, -2, 1) \)

(b) The length or magnitude of \(\mathbf{v} = \overrightarrow{PQ} \) is

\[|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = 3. \]

Vector Algebra operations:

Let \(u = (u_1, u_2, u_3) \) and \(\mathbf{v} = (v_1, v_2, v_3) \) be vectors with \(k \) a scalar

Addition: \(u + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3) \)

Scalar multiplication: \(ku = (ku_1, ku_2, ku_3) \)

Vector Analysis
If \(k > 0 \) \(\Rightarrow \) \(ku \) has the same direction as \(u \).

If \(k < 0 \) \(\Rightarrow \) the direction of \(ku \) is opposite to that of \(u \).

\[
|ku| = \sqrt{(ku_1)^2 + (ku_2)^2 + (ku_3)^2} = \sqrt{k^2(u_1^2 + u_2^2 + u_3^2)}
\]

\[
= \sqrt{k^2} \sqrt{u_1^2 + u_2^2 + u_3^2} = |k||u|
\]

\((-1)u = -u \) has the same length as \(u \) but points in the opposite direction.

\(u - v = u + (-v) \) difference of two vectors.

if \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \)

\(u - v = (u_1 - v_1, u_2 - v_2, u_3 - v_3) \)

Ex.2: Let \(u = (-1,3,1) \) and \(v = (4,7,0) \).

Find:

- a) \(2u + 3v \)
- b) \(u - v \)
- c) \(\frac{1}{2}u \)

Sol:

- a) \(2u + 3v = 2(-1,3,1) + 3(4,7,0) = (-2,6,2) + (12,21,0) = (10,27,2) \)
- b) \(u - v = (-1,3,1) - (4,7,0) = (-1 - 4,3 - 7,1 - 0) = (-5,-4,1) \)
Properties of Vector Operations

Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) be vectors and \(a, b \) be scalars.

1. \(\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \)
2. \((\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \)
3. \(\mathbf{u} + \mathbf{0} = \mathbf{u} \)
4. \(\mathbf{u} + (-\mathbf{u}) = \mathbf{0} \)
5. \(a\mathbf{u} = 0 \)
6. \(1\mathbf{u} = \mathbf{u} \)
7. \(a(b\mathbf{u}) = (ab)\mathbf{u} \)
8. \(a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v} \)
9. \((a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u} \)

Unit Vectors:

A vector \(\mathbf{v} \) of length 1 is called a unit vector. The standard unit vectors are: \(\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \text{and } \mathbf{k} = (0,0,1) \)

Any vector \(\mathbf{v} = (v_1, v_2, v_3) \) can be written as a linear combination of the standard unit vectors as follows:

\[
\mathbf{v} = (v_1, v_2, v_3) = (v_1, 0, 0) + (0, v_2, 0) + (0, 0, v_3)
\]

\[
= v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}
\]

We call the scalar (or number) \(v_1 \) the \(i \) – component of the vector \(\mathbf{v} \), \(v_2 \) the \(j \) – component, and \(v_3 \) the \(k \) – component.

\[
\overrightarrow{P_1P_2} = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k
\]

\[
\left| \frac{1}{|v|} \mathbf{v} \right| = \frac{1}{|v|} |v| = 1
\]

\[
\frac{\mathbf{v}}{|v|}
\]

is a unit vector in the direction of \(\mathbf{v} \), called the direction of the nonzero vector \(\mathbf{v} \).
Ex₃:

1. Find a unit vector \(\mathbf{u} \) in the direction of the vector from \(P_1(1,0,1) \) to \(P_2(3,2,0) \)

Sol: \(\overrightarrow{P_1P_2} = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k \)
\[\overrightarrow{P_1P_2} = (3 - 1)i + (2 - 0)j + (0 - 1)k = 2i + 2j - k \]
\[|\overrightarrow{P_1P_2}| = \sqrt{(2)^2 + (2)^2 + (-1)^2} = \sqrt{9} = 3 \]
\[\mathbf{u} = \frac{\overrightarrow{P_1P_2}}{|\overrightarrow{P_1P_2}|} = \frac{2i + 2j - k}{3} = \frac{2}{3}i + \frac{2}{3}j - \frac{1}{3}k \]

The unit vector \(\mathbf{u} \) is the direction of \(\overrightarrow{P_1P_2} \).

2. If \(\mathbf{v} = 3i - 4j \) is a velocity vector, express \(\mathbf{v} \) as a product of its speed times a unit vector in the direction of motion.

Sol: Speed is the magnitude (length) of \(\mathbf{v} \)
\[|\mathbf{v}| = \sqrt{(3)^2 + (-4)^2} = \sqrt{25} = 5. \]

The unit vector \(\left(\mathbf{v}/|\mathbf{v}| \right) \) has the same direction as \(\mathbf{v} \):
\[\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3i - 4j}{5} = \frac{3}{5}i - \frac{4}{5}j \]
\[\mathbf{v} = 3i - 4j = 5 \left(\frac{3}{5}i - \frac{4}{5}j \right) \quad \mathbf{v} = |\mathbf{v}| \cdot \frac{\mathbf{v}}{|\mathbf{v}|} \]

3. A force of 6 newtons is applied in the direction of the vector \(\mathbf{v} = 2i + 2j - k \). Express the force \(\mathbf{F} \) as a product of its magnitude and direction.

Sol:

The force vector has magnitude 6 and direction \(\frac{\mathbf{v}}{|\mathbf{v}|} \)
\[\mathbf{F} = 6 \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{2i + 2j - k}{\sqrt{(2)^2 + (2)^2 + (-1)^2}} = \frac{2i + 2j - k}{3} = 6 \left(\frac{2}{3}i + \frac{2}{3}j - \frac{1}{3}k \right) = 6 \left(\frac{2}{3}i + \frac{2}{3}j - \frac{1}{3}k \right) \]
Mid point of a line Segment :

The midpoint \(M \) of the line segment joining points

\[P_1(x_1, y_1, z_1) \text{ and } P_2(x_2, y_2, z_2) \]

is the point

\[\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) \]

\[\overrightarrow{OM} = \overrightarrow{OP_1} + \frac{1}{2}(\overrightarrow{P_1P_2}) = \overrightarrow{OP_1} + \frac{1}{2}(\overrightarrow{OP_2} - \overrightarrow{OP_1}) = \frac{1}{2}(\overrightarrow{OP_1} + \overrightarrow{OP_2}) \]

\[= \frac{x_1 + x_2}{2} i + \frac{y_1 + y_2}{2} j + \frac{z_1 + z_2}{2} k. \]

Ex.4: Find midpoint of the segment joining \(P_1(3, -2, 0) \) and \(P_2(7, 4, 4) \).

Sol: \(M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) \)

\[= \left(\frac{3 + 7}{2}, \frac{-2 + 4}{2}, \frac{0 + 4}{2} \right) = (5, 1, 2) \]

Vector tangent and normal to the curve:

Two vectors are said to be parallel if are scalar multiples of each other.

\[\overrightarrow{v_2} = c \overrightarrow{v_1} \Rightarrow \overrightarrow{v_2} \text{ parallel to } \overrightarrow{v_1}. \]

Steps to find that vector:

1. Find the slope of the curve at that point = \(y' \) which is equal to slope of the vector.

for any vector like \(\overrightarrow{v} = c_1 i + c_2 j \), slope of the vector = \(\frac{c_2}{c_1} = y' \)

2. Find the unit vector \(\overrightarrow{u} = \frac{c_1}{\sqrt{c_1^2 + c_2^2}} i + \frac{c_2}{\sqrt{c_1^2 + c_2^2}} j \)

\[\overrightarrow{u} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|}, \text{ The vector } \overrightarrow{u} \text{ is tangent to the curve at that point} \]

because it has the same direction as \(\overrightarrow{v} \), and \(\theta = \tan^{-1} \frac{c_2}{c_1} \)

\[-\overrightarrow{u} = -\frac{c_1}{\sqrt{c_1^2 + c_2^2}} i - \frac{c_2}{\sqrt{c_1^2 + c_2^2}} j \text{ is the vector which points in the direction opposite to } \overrightarrow{u}, \text{ is also tangent to the curve at that point.} \]
3. To find unit vector normal to the curve at that point, we look for unit vectors whose slopes are the negative reciprocal of the slope of \(u \)

\[
 n = c_2 i - c_1 j, \quad \text{slope} = -\frac{c_1}{c_2} = -\frac{1}{\frac{c_1}{c_2}}, \quad \theta = \tan^{-1} -\frac{c_1}{c_2}.
\]

Ex_5: Find the unit vector tangent to the curve \(y = x^2 \) at a point \((2, 4)\), and it's perpendicular to the concave up side (normal).

Sol: \(y = x^2 \Rightarrow y' = 2x |_{(2, 4)} \),

\[
y' = 4 \quad \text{slope of the curve equal to slope of the vector}.
\]

\[
\text{slope of the vector} = \frac{c_2}{c_1} = 4 = \frac{4}{1}
\]

\[
\vec{v} = i + 4j \Rightarrow u = \frac{\vec{v}}{|v|} = \frac{1}{\sqrt{17}} i + \frac{4}{\sqrt{17}} j
\]

and in the opposite direction is \(- \vec{v} = -i - 4j\).

\[
-u = -\frac{1}{\sqrt{17}} i - \frac{4}{\sqrt{17}} j \quad \& \quad \theta = \tan^{-1} \frac{c_2}{c_1} = \tan^{-1} 4.
\]

perpendicular (normal) vector slope \(- \frac{1}{4} \Rightarrow \frac{1}{4} \), \quad \(n = 4i - j \)

\[
u_n = \frac{4}{\sqrt{17}} i - \frac{1}{\sqrt{17}} j \quad \& \quad \theta = \tan^{-1} -\frac{c_1}{c_2} = \tan^{-1} -\frac{1}{4},
\]

and opposite normal \(- n = -4i + j\)

Ex_6: Express the vectors in form of \(ai + bj \) for the following:

1. \(\overrightarrow{P_1 P_2} \) where \(P_1 = (1, 3) \) and \(P_2(2, -1) \)

\[
\overrightarrow{P_1 P_2} = (x_2 - x_1)i + (y_2 - y_1)j = (2 - 1)i + (-1 - 3)j = i - 4j
\]

or \(\overrightarrow{P_1 P_2} = \overrightarrow{P_1 O} + \overrightarrow{OP_2} = (0 - 1)i + (0 - 3)j + (2 - 0)i + (-1 - 0)j
\]

\[
= -i - 3j + 2i - j = i - 4j
\]

or \(\overrightarrow{P_1 P_2} = \overrightarrow{OP_2} + \overrightarrow{OP_1} = (2 - 0)i + (-1 - 0)j - [(1 - 0)i + (3 - 0)j] \)

Vector Analysis
\[2i - j - i - 3j = i - 4j \]

2. \(\overline{OP_3} \) if \(O \) is the origin and \(P_3 \) is the midpoint of vector \(\overline{P_1P_2} \) (\(P_1(2,-1) \) & \(P_2(-4,3) \))

Midpoint = \(\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right) \)

\[P_3 = \left(\frac{2+(-4)}{2}, \frac{-1+3}{2} \right) \Rightarrow P_3(-1,1) \]

\(\overline{OP_3} = (x_3 - x_0)i + (y_3 - y_0)j = (-1 - 0)i + (1 - 0)j \)

\(\overline{OP_3} = -i + j \)

3. From \(A(2,3) \) to the origin

\(\overline{AO} = (x_0 - x_A)i + (y_0 - y_A)j = (0 - 2)i + (0 - 3)j \)

\(\overline{AO} = -2i - 3j \).

4. The unit vector has the same direction of \(3i - 4j \).

\(\vec{v} = 3i - 4j \), \(|\vec{v}| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5 \)

\(u = \frac{v}{|v|} = \frac{3}{5}i - \frac{4}{5}j \).

5. Find the length and direction of the vector \(\vec{v} = -2i + 3j \).

\(|v| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \)

\(u = -\frac{2}{\sqrt{13}}i + \frac{3}{\sqrt{13}}j \), \(\vartheta = \tan^{-1} \frac{3}{-2} = 56.3 \text{ in quarter 2} \)

\(\therefore \vartheta = 180 - 56.3 = 123.7 \)

\(\vartheta = \tan^{-1} \frac{\frac{c_2}{c_1}}{\frac{x}{y}} \quad \{ x = -ve \} \Rightarrow \text{quarter 2} \)
The Dot Product:

Angle Between Vectors:

The angle between two nonzero vectors \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) is given by

\[
\theta = \cos^{-1}\left(\frac{u_1v_1 + u_2v_2 + u_3v_3}{|u||v|} \right).
\]

The dot product \(u \cdot v \) (u dot v) of vectors \(u(u_1, u_2, u_3) \) and \(v(v_1, v_2, v_3) \) is

\[
u \cdot v = u_1v_1 + u_2v_2 + u_3v_3
\]

\[
\therefore \cos^{-1}\left(\frac{u \cdot v}{|u||v|} \right)
\]

Ex.7:

1. \((1, -2, -1) \cdot (-6, 2, 3) = (1)(-6) + (-2)(2) + (-1)(-3) = -6 - 4 + 3 = -7
\]

2. \(\left(\frac{1}{2}i + 3j + k \right) \cdot (4i - j + 2k) = \left(\frac{1}{2} \right)(4) + (3)(-1) + (1)(2) = 1 \)

Note: The dot product of a pair of two - dimensional vectors is defined in a similar fashion:

\((u_1, u_2) \cdot (v_1, v_2) = u_1v_1 + u_2v_2\)

Ex.8:

1. Find the angle between \(u = i - 2j - 2k \) and \(v = 6i + 3j + 2k \)

Sol: \(u \cdot v = (1)(6) + (-2)(3) + (-2)(2) = 6 - 6 - 4 = -4 \)

\[|u| = \sqrt{(1)^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3\]

\[|v| = \sqrt{(6)^2 + (3)^2 + (2)^2} = \sqrt{49} = 7\]

\[\theta = \cos^{-1}\left(\frac{u \cdot v}{|u||v|} \right), \quad \theta = \cos^{-1}\left(\frac{-4}{3 \cdot 7} \right) \approx 1.76 \text{ radians}.
\]

2. Find the angle \(\theta \) in the triangle \(ABC \) determined by the vertices \(A = (0,0), \quad B = (3,5), \) and \(C = (5,2) \).

Vector Analysis
Sol: The angle θ is the angle between the vectors \overrightarrow{CA} and \overrightarrow{CB}.

The component forms of these two vectors are

$\overrightarrow{CA} = (-5, -2)$ and $\overrightarrow{CB} = (-2, 3)$

$\overrightarrow{CA} \cdot \overrightarrow{CB} = (-5)(-2) + (-2)(3) = 4$

$|\overrightarrow{CA}| = \sqrt{(-5)^2 + (-2)^2} = \sqrt{29}$

$|\overrightarrow{CB}| = \sqrt{(-2)^2 + (3)^2} = \sqrt{13}$

$\theta = \cos^{-1} \left(\frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}||\overrightarrow{CB}|} \right) = \cos^{-1} \left(\frac{4}{(\sqrt{29})(\sqrt{13})} \right) \approx 78.1^\circ$ or 1.36 radians.

Perpendicular (Orthogonal) Vectors:

$\theta = \cos^{-1} \left(\frac{u \cdot v}{|u||v|} \right) \Rightarrow u \cdot v = |u||v| \cos \theta$

Two nonzero vectors u & v are perpendicular or orthogonal if the angle between them is $\frac{\pi}{2}$.

$\cos(\pi/2) = 0 \Rightarrow u \cdot v = 0 \Rightarrow \theta = \cos^{-1}(0) = \frac{\pi}{2}$

Ex 9:

1. $u = (3, -2)$ and $v = (4, 6)$

 $u \cdot v = (3)(4) + (-2)(6) = 0$ (u & v are orthogonal).

2. $u = 3i - 2j + k$ and $v = 2j + 4k$

 $u \cdot v = (3)(0) + (-2)(2) + (1)(4) = 0$ (u & v are orthogonal).

Dot Product Properties and Vector Projections:

Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

1. $u \cdot v = v \cdot u$
2. $(cu) \cdot v = u \cdot (cv) = c(u \cdot v)$
3. $u \cdot (v + w) = u \cdot v + u \cdot w$
4. $u \cdot u = |u|^2$
5. $0 \cdot u = 0$.

Vector Analysis
Vector projection of \(u \) onto \(v \):

\[
\text{proj}_v u = \left(\frac{u \cdot v}{|v|^2} \right) v = \left(\frac{u \cdot v}{v \cdot v} \right) v
\]

Scalar component of \(u \) in the direction of \(v \):

\[
|u| \cos \theta = \frac{u \cdot v}{|v|} = \frac{u}{|v|} v
\]

Note: Both the vector projection of \(u \) onto \(v \) and the scalar component of \(u \) onto \(v \) depend only on the direction of the vector \(v \) and not its length (because we dot \(u \) with \(v/|v| \), which is the direction of \(v \)).

Ex10:

1. **Find the vector projection of \(u = 6i + 3j + 2k \) onto \(v = i - 2j - 2k \) and the scalar component of \(u \) in the direction of \(v \).**

Sol:

\[
\text{proj}_v u = \left(\frac{u \cdot v}{|v|^2} \right) v = \left(\frac{u \cdot v}{v \cdot v} \right) v = \frac{6 - 6 - 4}{1 + 4 + 4} (i - 2j - 2k)
\]

\[
= -\frac{4}{9} (i - 2j - 2k) = -\frac{4}{9} i + \frac{8}{9} j + \frac{8}{9} k.
\]

\[
|u| \cos \theta = u \cdot \frac{v}{|v|} = (6i + 3j + 2k) \cdot \left(\frac{1}{3} i - \frac{2}{3} j - \frac{2}{3} k \right) = 2 - 2 - \frac{4}{3} = -\frac{4}{3}
\]

\(|v| = \sqrt{1^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3 \)

Vector Analysis
2. Find the vector projection of a force \(F = 5i + 2j \) onto \(v = i - 3j \) and the scalar component of \(F \) in the direction of \(v \).

Sol: \(\text{proj}_v F = \left(\frac{F \cdot v}{v \cdot v} \right) v = \frac{5 - 6}{1 + 9} (i - 3j) = -\frac{1}{10} i + \frac{4}{10} j. \)

\[|F| \cos \theta = \frac{F \cdot v}{|v|} = \frac{5 - 6}{\sqrt{1 + 9}} = -\frac{1}{\sqrt{10}}. \]

The Cross Product:

Two nonzero vectors \(u \) and \(v \) in space are not parallel. We select a unit vector \(n \) perpendicular to the plane by the right-hand rule. \(u \times v = (|u||v| \sin \theta) n \)

Two nonzero vectors \(u \) and \(v \) in space are parallel if and only if \(u \times v = 0 \).

Properties of the Cross Product:

<table>
<thead>
<tr>
<th>Properties of the Cross Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (u, v,) and (w) are any vectors and (r, s) are scalars, then</td>
</tr>
<tr>
<td>1. ((ru) \times (sv) = (rs)(u \times v))</td>
</tr>
<tr>
<td>2. (u \times (v + w) = u \times v + u \times w)</td>
</tr>
<tr>
<td>3. ((v + w) \times u = v \times u + w \times u)</td>
</tr>
<tr>
<td>4. (v \times u = -(u \times v))</td>
</tr>
<tr>
<td>5. (0 \times u = 0)</td>
</tr>
</tbody>
</table>

\(|u \times v| \) is the area of a parallelogram.

Because \(n \) is a unit vector, the magnitude of \(u \times v \) is

Vector Analysis
\[|u \times v| = |u||v||\sin \theta||n| = |u||v| \sin \theta \]

Determinant Formula for \(u \times v \):

If \(u = u_1i + u_2j + u_3k \) and \(v = v_1i + v_2j + v_3k \), then

\[
\begin{vmatrix}
i & j & k \\
u_1 & u_2 & u_3 \\
v_1 & v_2 & v_3 \\
\end{vmatrix}
\]

Ex_{11}:

1. Find \(u \times v \) and \(v \times u \) if \(u = 2i + j + k \) and \(v = -4i + 3j + k \).

Sol:

\[
\begin{vmatrix}
i & j & k \\2 & 1 & 1 \\-4 & 3 & 1 \\
\end{vmatrix} = \begin{vmatrix}1 & 2 & 1 \\1 & -4 & 1 \\2 & 3 & 1 \\
\end{vmatrix} = k
\]

\[u \times v = -2i - 6j + 10k \]
\[\therefore v \times u = -(u \times v) = 2i + 6j - 10k \]

2. Find a) vector perpendicular to the plane of \(P(1,-1,0), Q(2,1,-1), \) and \(R(-1,1,2) \). b) area of the triangle. c) unit vector perpendicular to the plane.

Sol: a) The vector \(\overrightarrow{PQ} \times \overrightarrow{PR} \) is perpendicular to the plane because it is perpendicular to both vectors.

\[\overrightarrow{PQ} = (2-1)i + (1+1)j + (-1-0)k = i + 2j - k. \]

\[\overrightarrow{PR} = (-1-1)i + (1+1)j + (2-0)k = -2i + 2j + 2k. \]
\[\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & -4 & 1 \\ -4 & 1 & 3 \end{vmatrix} k \\
= 6i + 6k \]

b) \(|\overrightarrow{PQ} \times \overrightarrow{PR}| = |6i + 6k| = \sqrt{6^2 + 6^2} = \sqrt{2 \times 36} = 6\sqrt{2} \) is the area of the parallelogram.

\[\therefore \text{The triangle's area is half of the parallelogram area} \quad \frac{6\sqrt{2}}{2} = 3\sqrt{2} \]

c) Since \(\overrightarrow{PQ} \times \overrightarrow{PR} \) is perpendicular to the plane, its direction \(n \) is a unit vector perpendicular to the plane

\[n = \frac{\overrightarrow{PQ} \times \overrightarrow{PR}}{|\overrightarrow{PQ} \times \overrightarrow{PR}|} = \frac{6i + 6k}{6\sqrt{2}} = \frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} k. \]