Resistors

1. Linear resistor
2. Non linear resistor
A-photo resistors
B-thermostats
C-voltage-dependent resistors

1. Linear resistor (obeys ohms law)
 \[R = \frac{I}{V}, \ \Omega, \ K\Omega, \ M\Omega \]
 Power rating (wattage) \(W = V \times I = I^2 \times R \). (1/8W, 1/4W, 1)

-COLOUR CODING

<table>
<thead>
<tr>
<th>Color</th>
<th>figure</th>
<th>Tolerance(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BROWN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RAD</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ORANGE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>YELLOW</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VIOLET</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GREY</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td>9</td>
<td>±5%</td>
</tr>
<tr>
<td>SILVER</td>
<td></td>
<td>±0.1%</td>
</tr>
<tr>
<td>NONE</td>
<td></td>
<td>±0.2%</td>
</tr>
<tr>
<td>GOLD</td>
<td></td>
<td>±1.0%</td>
</tr>
</tbody>
</table>

Resistor \(\Omega = \text{first colour} + \text{second colour} \times 10 + \text{third colour} \pm \text{fourth colour} \)

\[R = 18 \times 10^2 \pm 5\% \]

2-CAPACITORS

The ability of capacitor to store energy is called (capacitance)

* capacitance, \(C = \frac{\text{charge}}{\text{charge}} V, C = \varepsilon \times A/d \)
\[C, \mu F = 1 \times 10^{-9} \text{ FARAD}, \quad nF = 1 \times 10^{-12} \text{ FARAD} \]

\[\varepsilon = \text{dielectric constant of insulator} \]
\[A = \text{area of plat} \]
\[d = \text{distance between two plates} \]

VOLTAGE RATING

The maximum voltage that can applied between the plates of a capacitor without

STOED ENERGY IN CAPACITORS

Energy (Joules) = \(\frac{1}{2} CV^2 \)

TYPES OF CAPACITORS

A- NON-ELECTROLYTIC (not polarized)
B- ELECTROLYTIC (polarized)

SERIES CONNECTIONS

\[C_t = \frac{1}{C_1 + \frac{1}{C_2}} \]

PARALLELED CONNECTION

\[C_t = C_1 + C_2 \]

\[
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{capacitor_connections}
\caption{Series and paralleled capacitor connections}
\end{figure}
CHARGING AND DISCHARGING CAPACITOR

A) - CHARGING CAPACITORS

The capacitor may be charged from a D.C. supply (V_s) to a (V_c)

$$V_c = V_s (1 - \exp(-t / RC))$$

$RC = \text{time constant} = (\tau)$

$$RC = V / I \times Q / V = Q / (Q / t) = \text{sec}$$

After $t = \tau = RC$

$$V_c = 0.63 V_s$$

After $t = 0.63 RC = V_c \approx V_s$

B) - CHARGING CURRENT
\[I = \frac{V_s}{R} \exp\left(\frac{-t}{RC}\right) \]

After \(t = \tau = RC \)
\[i = \frac{0.37V_s}{R} \approx i \text{ after } t \approx 5RC \]

B) DISCHARGING CAPACITOR

After the process to \(V_s \), the discharge will take the form:

\[V_c = V_s \exp\left(-\frac{t}{RC}\right) \]

(Voltage across the capacitor)

\[i = \frac{V_s}{R} - \exp\left(-\frac{t}{RC}\right) \]

(Discharge current in the discharge circuit)

*The discharge & the charge frequency of the circuit is related to the (\(\tau \))
\[F_{Hz} = \frac{1}{\tau} \]

INDUCTORS & TRANSFORMERS:

1-SELF-INDUCTANCE. Is the property in which e.m.f is produced when a charging current flows in the circuit or component.

\[e.m.f., C = n \left(\frac{d \Phi}{dt} \right) = -L \left(\frac{d I}{dt} \right) \ldots \text{Faraday's law} \]

THES, the self-inductance \(L = N \left(\frac{d \Phi}{dt} \right) \)
\[L = \mu_0 \mu r AN^2/l \quad \text{(coil)} \]
Where \(\mu \circ \mu_r = \mu \) (permeability of the core).
\(\mu \) is the ability of a material to conduct magnetic flux (permeability)
\(N \) is the number of turns of coil
\(A \) is the cross sectional area of coil
\(L \) is the length of coil

2-MUTUAL INDUCTANCE

Two circuits are said to possess mutual inductance if a charging current in one circuit gives rise to charging magnetic flux, which links with the second circuit, causing an e.m.f. to be induced in the second coil

3-TRANSFORMERS

The transformers are used either step-up transformer or step down transformer.
*step-up \(V_s \uparrow, I_s \downarrow \)
*step-down \(V_s \downarrow, I_s \uparrow \)

*transformation ratio, \(N= \frac{V_p}{V_s} = \frac{N_p}{N_s} \)
= \(\frac{I_s}{I_p} \)
4. **IDEAL DIODE:**

The ideal diode, is an open circuit in reverse biasing and is a short circuit in forward biasing.

- **Short Circuit:**
 + ← | -

- **Open Circuit:**
 + ← | ← -

a) Forward biasing: + ← |

b) Reverse biasing: - ← |

5. **REAL DIODE:**

1) **CURRENT-VOLTAGE CHARACTERISTICS OF DIODES**

The diode current can be related to the applied Voltage on the temperature with the following equation:

\[I_d = I_s \left(\exp \left(\frac{KV}{T} \right) - 1 \right) \]

Where \(I_s \) is reverse current saturation

\[K = \frac{11600}{\eta} \]

\(\eta = 1 \) for Ge diode & 2 for Si diode

\(V \) = the applied voltage (+) for forward biasing & (-) for reverse biasing

2) **DC OR STATIC RESISTANCE OF DIODE** (\(R_{dc} \))

\[R_{dc} = \frac{V_D}{I_D} \Omega \]

3) **AC OR DYNAMIC RESISTANCE OF DIODE** (\(R_{ac} \))

\[R_{ac} = \frac{\Delta V_d}{\Delta I_d} \Omega \]

C) DIODE SPECIFICATION:

The specifications of semiconductor diode are:

1. The maximum forward voltage \(V_{f_{\text{max}}} \)
2. The maximum forward current \(I_{f_{\text{max}}} \)
3- The maximum reverse current IR max

D-Diode applications:

- A- half-wave Rectification
- B- full-wave Rectification

1- Rectification.

A- half-wave Rectification.

\[V_{d.c} = 0.318 \, V_m - V_t \]

\[PIV \, Rating = V_m \]
b- full-wave Rectification.

![Diagram of full-wave rectification](image)

1 – Bridge Rectification

During the period

\[T = 0 \text{ to } t / 2 \quad D_2, D_3 \text{ (short)} \]

During the period

\[T = t / 2 \text{ to } t \quad D_1, D_4 \text{ (short)} \]

\[D_2, D_3 \text{ (open)} \]

\[V_{dc} = 0.636 \ (V_m - 2V_t) \]

\[PIV = V_m \]

2- full-wave Rectification with center-tapped transformer

![Diagram of full-wave rectification with center-tapped transformer](image)
* The potential at point (a) = zero (center the secondary coil).

* during the negative port (0→T/2)
 D2 (short)
 D1 (open)

* during the positive port (T/2→T)
 D1 (short)
 D2 (open)

V d.c = 0.636 (V m -Vt)
PIV=2Vm

2-Clippers
The diode networks that have the ability" clip" of apportion of the input signal without distorting the remaining part of the alternating wafer.

A-Series

b- Parallel

3- Clampers.
The diode network that will "Clamp" a signal to a different DC level
Examples

1- Sketch (V out) for each networks (ideal diode)

A-

B-

2- Determine the output wave from for the network

3- A full-wave bridge rectifier with a 20 V r. M. s sinusoidal input has a load resistor of 1kΩ

a- if silicon diode employed, what is the (D C) voltage an available at the load.
b- determine the required PIV rating of each diode.

c- Find the maximum current through each diode during conduction

4- Determine \((V_{out})\) and the required PIV rating of each diode for the network

5- Assuming an ideal diode, sketch \(V_I, V_D\) and \(I_d\) for the half-wave rectifier of the figure. The input is a sinusoidal waveform with a frequency of 60 Hz

*repeat (Q5) with a silicon diode \((V_t = 0.7)\).

6- sketch \((V_{out})\) for the network of fig and determine the DC voltage viable
4-Filtering

The o/p voltage from bridge rectifier or half-wave rectifier is not pure DC voltage to increase the DC component in the o/p wave for a capacitor must be used.

* The pulse period \(T = \frac{1}{F_{\text{out}}} \) \(F_{\text{out}} = 2F_{\text{in}} \)

for good DC (nearly pure DC) \(RLC \geq 10^ \) \(T \)

*\(V_{\text{DC}} = [1- \frac{0.00417}{RLC}] \times V_p \)

Where \(V_{\text{DC}} \) is the o/p DC voltage, \(V_p \) is the peak a flow the bridge rectifier

*the ripple voltage

\[V_r = 0.0024 \frac{V_p}{RLC} \] \(r.m.s \)

* The important parameter in Dc power supply. Is the ripple factor \((r) \)

\[r = \frac{V_r}{V_{\text{DC}}} \times 100 \% \]

e \(x \): for the circuit in fig (a) if the \(V_p = 30v \), find the \(V_{\text{DC}} \) and the ripple voltage

e \(x \): Design voltage mode power supply with the following characteristics
A- Output voltage 10V?
b- Output current 1 A?
c- Ripple factor 5%?