Fluid Mechanics II
ميكانيك الموائع (2)
(ملخص)

3rd year Mechanical Engineering
المرحلة الثالثة - عام/تكيف/سيارات
2011/2012

مدرس المادة
د. إخلاص محمد فياض
د. محمد إدريس محسن
أستاذ مساعد
أستاذ مساعد
<table>
<thead>
<tr>
<th>Week</th>
<th>Contents</th>
<th>المحتويات</th>
<th>الأسبوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Navier-Stokes equations</td>
<td>معادلات نايفر – ستوكس</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>- Introduction</td>
<td>- مقدمة</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Derivation</td>
<td>- الانقاص</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Laminar flow between parallel plates</td>
<td>- الجرليان الطبقي بين صفتيتين متوازيتين</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>- Couette flow</td>
<td>- جريان كوتا</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- Hydrodynamic lubrication</td>
<td>- التكيتي الهيدروديناميكي</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>- Sliding bearing</td>
<td>- الحامل الانزلاق</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>- Collar bearing</td>
<td>- الحامل ذو أطواق</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- Laminar flow between coaxial rotating cylinders</td>
<td>- الجريان الطبقي بين اسطوانتين ممتركتين</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- دائرة</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Boundary layer theory</td>
<td>نظرية الطبقة المناخمة</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>- Introduction</td>
<td>- مقدمة</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Displacement, Momentum, and Energy thicknesses</td>
<td>- سمك الإزاحة ، سمك الزخم ، سمك الطاقة</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>- Momentum equation for the boundary layer</td>
<td>- معادلة الزخم للطبقة المناخمة</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>- Laminar boundary layer</td>
<td>- الطبقة المناخمة الطبقي</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>- Turbulent boundary layer</td>
<td>- الطبقة المناخمة الانزلاقية</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>- Transition from laminar to turbulent flow</td>
<td>- التحول من الجريان الطبقي إلى الانزلاقية</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>- Effect of pressure gradient</td>
<td>- تأثير انحدار الضغط</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>- Separation and pressure drag</td>
<td>- الانفصال والكح الذاهي عن الضغط</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Hydraulic machines</td>
<td>الماكينات الهيدروليكية</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>- General introduction</td>
<td>- مقدمة عامة</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Classification</td>
<td>- التصنيف</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Centrifugal pump</td>
<td>المضخة الطاردة المركزية</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>- The moment of momentum equation</td>
<td>- معادلة عزم الزخم</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Velocity diagrams</td>
<td>- مثاثات السرعة</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Efficiencies</td>
<td>- الكفاءات</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>- Types of impellers</td>
<td>- أنواع الدفاعات</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>- Performance curves</td>
<td>- منحنيات الأداء</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>- Operating point</td>
<td>- نقطة الالتعال</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pump connection</td>
<td>- ربط المضخات (توالي / توازي)</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Topic</td>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Multistage pumps</td>
<td>Multistage pumps - General view - Types of multistage pumps</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pump selection</td>
<td>Pump selection - Pump selection charts - Performance charts</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Water turbines</td>
<td>Water turbines - Impulse turbine (Pelton turbine) - Reaction turbine (Francis turbine) - Axial flow reaction turbine (Kaplan turbine)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Hydraulic machines</td>
<td>Hydraulic machines - Specific speed - Dimensional analysis and similarity laws for hydraulic machines</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Cavitation in hydraulic machines</td>
<td>Cavitation in hydraulic machines - Cavitation in pumps - Cavitation in water turbines</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Two-phase flow</td>
<td>Two-phase flow - Introduction - Flow patterns</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Two-phase flow(gas + liquid)</td>
<td>Two-phase flow(gas + liquid) - Homogeneous flow model - Separated flow model - Applications</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Potential flow theory (Ideal fluid)</td>
<td>Potential flow theory (Ideal fluid) - Introduction - Continuity equation - Vorticity equation</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Basic concepts in potential flow</td>
<td>Basic concepts in potential flow - Stream function - Potential function - Circulation</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Basic flow patterns</td>
<td>Basic flow patterns - Uniform flow - Source, Sink - Doublet - Free vortex</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Combination of basic flows</td>
<td>Combination of basic flows - Flow past a half body - Flow past a Rankine oval - Flow past a cylinder - Flow past a cylinder with circulation</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syllabus

<table>
<thead>
<tr>
<th>Week</th>
<th>Contents</th>
<th>المحتويات</th>
</tr>
</thead>
</table>
| 1 | Navier-Stokes equations
- Introduction
- Derivation
- Laminar flow between parallel plates
- Couette flow
- Hydrodynamic lubrication
- Sliding bearing
- Collar bearing
- Laminar flow between coaxial rotating cylinders | معادلات تافير – ستوك - مقدمة - الاشتقاق
- جريران الطبقي بين صفائح متوازيين
- جريران كوتا - التزويت الهيدروديناميكي
- الاحياء الإزالة، الحمل الإزالة
- الاحياء الإزالة، الحمل ذو أطواق
- الحريان الطبقي بين اسطوانتين متمركزين - انفصال دوارتين |
| 2 | Boundary layer theory
- Introduction
- Displacement, Momentum, and Energy thicknesses.
- Momentum equation for the boundary layer.
- Laminar boundary layer
- Turbulent boundary layer
- Transition from laminar to turbulent flow
- Effect of pressure gradient
- Separation and pressure drag
- Separation of flow inside pipes and ducts | نظرية الطبقة المناخية - مقدمة - الاحياء الإزالة، سمك الزخم، سمك الطاقة
- معايزة الزخم للطبقة المناخية - الطبقة المناخية الطبقي - الطبقة المناخية الاضطرابية - تحول الحريان الطبقي إلى الاضطرابي - تأثير انحدار الضغط - الانفصال والانكسار الناشئ عن الضغط - انفصال الحريان في الأنابيب ومجاري الهواء |
| 3 | Pumps
- General introduction
- Classification
- Types of impellers
- Performance curves
- Operating point
- Pump connection (series / parallel) | المضخات - مقدمة عامة - التصنيف - أنواع الدفاعات - مثليات الأداء - نقطة التشغيل - ربط المضخات (توالي / توازي) |
| 4 | Centrifugal pump
- The moment of momentum equation
- Velocity diagrams
- Efficiencies
- Types of impellers
- Performance curves
- Operating point
- Pump connection (series / parallel) | المضخة الطاردة المركزية - معايزة ظرف الزخم - ثلاثة السرعة - الكفاءات - انواع الدفاعات - مثليات الأداء - نقطة التشغيل - ربط المضخات (توالي / توازي) |
<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Multistage pumps</td>
<td>- General view</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Types of multistage pumps</td>
</tr>
<tr>
<td>17</td>
<td>Pump selection</td>
<td>- Pump selection charts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Performance charts</td>
</tr>
<tr>
<td>18</td>
<td>Pumps</td>
<td>- Specific speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dimensional analysis and similarity laws for pumps</td>
</tr>
<tr>
<td>19</td>
<td>Cavitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fans</td>
<td>- General introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Classification</td>
</tr>
<tr>
<td>21</td>
<td>Types of fans</td>
<td>- Centrifugal fan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Axial flow fan</td>
</tr>
<tr>
<td>22</td>
<td>Fan characteristics</td>
<td>- Fan and system characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(series / parallel)</td>
</tr>
<tr>
<td>23</td>
<td>Two-phase flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flow patterns</td>
</tr>
<tr>
<td>24</td>
<td>Two-phase flow (gas + liquid)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Homogeneous flow model</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>- Separated flow model</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>- Applications</td>
</tr>
<tr>
<td>27</td>
<td>Potential flow theory (Ideal fluid)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Continuity equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vorticity equation</td>
</tr>
<tr>
<td>28</td>
<td>Basic concepts in potential flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Stream function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Potential function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Circulation</td>
</tr>
<tr>
<td>29</td>
<td>Basic flow patterns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Uniform flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Source , Sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Doublet</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>- Free vortex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flow in the vicinity of a corner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flow in a bend</td>
</tr>
</tbody>
</table>
References

1- Fluid Mechanics By Streeter & Wylie

2- Fluid Mechanics with Engineering Applications
 By Daugherty & Franzini

3- Introduction to Fluid Mechanics
 By Fox & McDonald

4- Engineering Fluid Mechanics
 By Roberson & Crowe

ملحوظة:
هذه المحاضرات تتضمن ملخص لمادة ميكانيك الموائع للمرحلة الثالثة وهي لا تغني الطالب عن حضور الساعات النظرية المقررة في جدول الدروس الأسبوعي.
Chapter One
Navier – Stokes Equations

Contents
1- Navier-Stokes equations.
2- Steady laminar flow between parallel flat plates.
3- Hydrodynamic lubrication.
4- Laminar flow between concentric rotating cylinders.
5- Examples.
6- Problems; sheet No. 1

1- Navier-Stokes equations:

The general equations of motion for viscous incompressible, Newtonian fluids may be written in the following form:

\[\begin{align*}
\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right] &= \rho g_x - \frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] \quad \text{(1)} \\
\rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right] &= \rho g_y - \frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right] \quad \text{(2)}
\end{align*}\]

Equations (1) and (2) are called: Navier Stokes equations.

2- Steady laminar flow between parallel flat plates:

The fluid moves in the x- direction without acceleration.
\[v = 0, \ w = 0, \ \frac{\partial v}{\partial t} = 0\]

the Navier-Stokes equation in the x- direction (eq. 1) reduces to:
\[-\rho g_s + \frac{dp}{dx} = \mu \frac{d^2 u}{dy^2} \quad \cdots \cdots \cdots \cdots (3)\]

\[g_s = g \sin \theta = -g \frac{dh}{dx} \]

eq 3 will be

\[\frac{d^2 u}{dy^2} = \frac{1}{\mu} \frac{d(p + \gamma h)}{dx} \quad \cdots \cdots \cdots \cdots (4)\]

Integration of eq. 4:

\[\frac{du}{dy} = \frac{1}{\mu} \frac{d(p + \gamma h)}{dx} y + A\]

\[u = \frac{1}{2\mu} \frac{d(p + \gamma h)}{dx} y^2 + Ay + B \quad \cdots \cdots \cdots \cdots (5)\]

B.C (Two fixed parallel plates)

\[y = 0 \quad u = 0 \implies B = 0\]

\[y = a \quad u = 0 \implies A = \frac{-a \frac{d(p + \gamma h)}{dx}}{2\mu} \]

eq 5 will be

\[u = \frac{1}{2\mu} \frac{d(p + \gamma h)}{dx} (y^2 - ay) \quad \cdots \cdots \cdots \cdots (6)\]

B.C (One plate is fixed and the other plate moves with a constant velocity U) (Couette flow)

\[y = 0 \quad u = 0 \implies B = 0\]

\[y = a \quad u = U \implies A = \frac{U}{a} - \frac{a \frac{d(p + \gamma h)}{dx}}{2\mu} \]

eq 5 will be

\[u = \frac{1}{2\mu} \frac{d(p + \gamma h)}{dx} (y^2 - ay) + \frac{Uy}{a} \quad \cdots \cdots \cdots \cdots (7)\]

For the case of horizontal parallel plates:

\[\frac{dh}{dx} = 0\]

eq 7 will be

\[u = \frac{1}{2\mu} \frac{dp}{dx} (y^2 - ay) + \frac{Uy}{a} \quad \cdots \cdots \cdots \cdots (8)\]
The location of maximum velocity u_{max} may be found by evaluating $\frac{du}{dy}$ and setting it to zero.

The volume flow rate is

$$Q = w \int_0^a u \, dy \quad \text{---------(9)}$$

3- Hydrodynamic lubrication:

Sliding bearing

Large forces are developed in small clearance when the surfaces are slightly inclined and one is in motion so that fluid is wedged into the decreasing space. Usually the oils employed for lubrication are highly viscous and the flow is of laminar nature.

Assumptions:

- The acceleration is zero.
- The body force is small and can be neglected.
- Also $\frac{\partial^2 u}{\partial y^2} \gg \frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial y^2} \gg \frac{\partial^2 u}{\partial z^2}$

The Navier-Stokes equation in the x-direction (eq. 1) reduces to:

$$\frac{d^2 u}{dy^2} = \frac{1}{\mu} \frac{dp}{dx}$$

Integration:

$$u = \frac{1}{2\mu} \left(\frac{dp}{dx} \right) y^2 + Ay + B$$

B.C

$$\begin{align*}
y = 0 & \quad u = U \quad \Rightarrow \quad B = U \\
y = h_x & \quad u = 0 \quad \Rightarrow \quad A = -\frac{h_x}{2\mu} \frac{dp}{dx} - \frac{U}{h_x}
\end{align*}$$
\[u = \frac{1}{2\mu} \frac{dp}{dx} \left(y^2 - h_y y\right) + U \left(1 - \frac{y}{h_c}\right) \]

The volume flow rate in every section will be constant.
\[Q = w \int_0^{h_c} u \, dy \quad \text{assume } w = 1 \]
\[\therefore Q = \frac{U h_y}{2} - \frac{h_y^3}{12\mu} \frac{dp}{dx} \quad \text{---(*)} \]

** For a constant taper bearing:
\[\delta = \frac{h_1 - h_2}{l} \]
\[\therefore h_x = (h_1 - \delta x) \]

Sub in eq.(*) and solving for \(\frac{dp}{dx} \) produces:
\[\frac{dp}{dx} = \frac{6\mu U}{(h_1 - \delta x)^2} - \frac{12\mu Q}{(h_1 - \delta x)^3} \]

Integration gives:
\[p(x) = \frac{6\mu U}{\delta(h_1 - \delta x)} - \frac{6\mu Q}{\delta(h_1 - \delta x)^2} + C \quad \text{---(**)} \]

B.C
\[x = 0 \quad p = p_o = 0 \]
\[x = l \quad p = p_o = 0 \]
\[\Rightarrow Q = \frac{U h_y}{h_1 + h_2} \quad \text{and} \quad C = \frac{-6\mu U}{\delta(h_1 + h_2)} \]

With these values inserted in eq.(**) we obtain the pressure distribution inside the bearing.
\[p(x) = \frac{6\mu U x (h_y - h_x)}{h_y^2 (h_1 + h_2)} \]

The load that the bearing will support per unit width is:
\[F = \int_0^l p(x) \, dx \]
\[F = \frac{6\mu U l^2}{(h_1 - h_2)^2} \left[\ln k - \frac{2(k - 1)}{k + 1} \right] \]

where
\[k = \frac{h_1}{h_2} \]
4- Laminar flow between concentric rotating cylinders:

Consider the purely circulatory flow of a fluid contained between two long concentric rotating cylinders of radius R_1 and R_2 at angular velocities ω_1 and ω_2.

In this case the Navier-Stokes equations in cylindrical coordinates are used.

r-direction:

$$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} + \frac{u_\theta}{r} + w \frac{\partial u_r}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{\mu}{\rho} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r} \right) - \frac{u_r}{r^2} + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial^2 u_r}{\partial z^2} \right] + g_r$$

θ-direction:

$$\frac{\partial u_\theta}{\partial t} + u_r \frac{\partial u_\theta}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_\theta}{r} + w \frac{\partial u_\theta}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial \theta} + \frac{\mu}{\rho} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_\theta}{\partial r} \right) - \frac{u_\theta}{r^2} + \frac{1}{r^2} \frac{\partial^2 u_\theta}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} + \frac{\partial^2 u_\theta}{\partial z^2} \right] + g_\theta$$

In the above equations:

$u_r = 0$

$w = 0$

$\frac{\partial}{\partial t} = 0$, $\frac{\partial u_\theta}{\partial \theta} = 0$, $\frac{\partial p}{\partial \theta} = 0$

Body force $= 0$

The equation in θ-direction reduces to:

$$\frac{d^2 u_\theta}{dr^2} + \frac{d}{dr} \left(\frac{u_\theta}{r} \right) = 0$$
Integration:
\[
\frac{1}{r} \frac{d}{dr} (ru_\theta) = A
\]
\[
u_\theta = Ar + \frac{B}{r} \quad \text{(i)}
\]

B.C
\[
r = R_1 \quad u_\theta = R_1 \omega_1 \\
r = R_2 \quad u_\theta = R_2 \omega_2
\]
\[
\Rightarrow \quad A = \omega_1 + \frac{R_2^2}{R_2^2 - R_1^2} (\omega_2 - \omega_1) \\
B = -\frac{R_1^2 R_2^2}{R_2^2 - R_1^2} (\omega_2 - \omega_1)
\]

Sub. in eq.(i) yields:
\[
u_\theta = \frac{1}{R_2^2 - R_1^2} \left[(\omega_1 R_2^2 - \omega_1 R_1^2) r - \frac{R_1^2 R_2^2}{r} (\omega_2 - \omega_1) \right] \quad \text{(ii)}
\]

The shear stress may be evaluated by the equation:
\[
\tau = \mu \left[r \frac{d}{dr} \left(\frac{u_\theta}{r} \right) \right]
\]

By using eq.(ii):
\[
\tau = \frac{2\mu}{R_2^2 - R_1^2} \frac{R_1^2 R_2^2}{r^2} (\omega_2 - \omega_1)
\]

5- Examples:

1- Using the Navier-Stokes equation in the flow direction, calculate the power required to pull (1m × 1m) flat plate at speed (1 m/s) over an inclined surface. The oil between the surfaces has \((\rho = 900 \text{ kg/m}^3 \quad \mu = 0.06 \text{ Pa.s})\). The pressure difference between points 1 and 2 is (100 kN/m²).

Solution:
The Navier-Stokes equation in x-direction
\[
\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right] = \rho g_x - \frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]
\]

We have: Acceleration = 0, \ v = 0, \ w = 0, \ \frac{\partial^2 u}{\partial x^2} = 0, \ \frac{\partial^2 u}{\partial z^2}

The equation reduces to:
\[
\frac{d^2 u}{dy^2} = \frac{1}{\mu} \frac{dp}{dx} - \frac{\rho}{\mu} g_x
\]

Integration
\[
\frac{du}{dy} = \frac{1}{\mu} \frac{dp}{dx} y - \frac{\rho}{\mu} g_x y + A
\]
\[
u = \frac{1}{2\mu} \frac{dp}{dx} y^2 - \frac{\rho}{2\mu} g_x y^2 + Ay + B
\]

B.C. (b = 10 mm)
\[
y = 0 \quad u = 0 \quad \Rightarrow B = 0
\]
\[
y = b \quad u = -U \quad \Rightarrow A = -\frac{U}{b} - b \frac{dp}{2\mu dx} + \frac{\rho b}{2\mu} g_x
\]

\[
\therefore \quad \frac{du}{dy} = \frac{1}{\mu} \frac{dp}{dx} y - \frac{\rho}{\mu} g_x y - \frac{U}{b} - b \frac{dp}{2\mu dx} + \frac{\rho b}{2\mu} g_x
\]

The shearing force on the moving plate:
\[
F = \tau_o \times \text{area}
\]
\[
F = \mu \cdot \frac{du}{dy}_{y=b} \times \text{area}
\]
\[
\text{area} = 1 \text{ m}^2
\]
\[
F = -\frac{\mu U}{b} + \frac{b}{2} \frac{dp}{dx} - \frac{b}{2} \rho g_x
\]

We have \(g_x = g \cdot \sin \theta \), \(\frac{dp}{dx} = -\frac{\Delta p}{l} \)
\[
F = -0.06 \times 1 - 0.01 \left(\frac{100 \times 10^3}{2} \right) - 0.01 \times 900 \times 9.81 \times \sin 30
\]
\[
F = -528 \text{ N}
\]

Power = \(F \cdot U \)
\[
\text{Power} = 528 \times 1 = 528 \text{ W} \quad \text{(Ans)}
\]
2- The external and internal diameters of a collar bearing are (20 cm and 15 cm) respectively. An oil film (0.3 mm) thick is maintained between the collar surface and the bearing. Find the power lost in overcoming the viscous resistance of the oil when the shaft is running at (240 rpm). Take \(\mu = 0.1 \) Pa.s.

Solution:

The figure shows two views of a collar bearing.

Consider an elemental angular circular strip of the bearing surface of radius \(r \) and width \(dr \). Circumferential resistance offered by the oil film over the strip:

\[
\tau = \mu \frac{\omega r}{h} \times 2\pi r dr = \frac{2\pi \mu \omega r^2 dr}{h}
\]

Torque required to overcome this resistance:

\[
T = \frac{2\pi \mu \omega r^2 dr}{h} \times \frac{1}{r} = \frac{2\pi \mu \omega r^3 dr}{h}
\]

Total torque required:

\[
T = \int_{R_1}^{R_2} \frac{2\pi \mu \omega r^3 dr}{h} = \frac{\pi \mu \omega}{2h} (R_2^4 - R_1^4)
\]

Power absorbed by the bearing:

\[
\omega = \frac{2\pi N}{60} = \frac{2\pi \times 240}{60} = 8\pi \text{ rad/s}
\]

\[
\text{Power} = \frac{\pi \times 0.1(8\pi)^2}{2 \times 0.0003} \left(0.1^4 - 0.075^4\right) = 22.6 \text{ W (Ans)}
\]
1- Using the Navier-Stokes equations, determine the pressure gradient along flow, the average velocity, and the discharge for an oil of viscosity 0.02 N.s/m^2 flowing between two stationary parallel plates 1 m wide maintained 10 mm apart. The velocity midway between the plates is 2 m/s.

\[-3200 \text{ N/m}^2 \text{ per m} ; 1.33 \text{ m/s} ; 0.0133 \text{ m}^3/\text{s}\]

2- An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown in figure. The two plates move in opposite directions with constant velocities U_1 and U_2. The pressure gradient in the x-direction is zero. Use the Navier-Stokes equations to derive expression for the velocity distribution between the plates. Assume laminar flow.

\[
u = \frac{y}{b} (U_1 + U_2) - U_2
\]

3- Two parallel plates are spaced 2 mm apart, and oil ($\mu = 0.1$ N.s/m^2, $S = 0.8$) flows at a rate of 24×10^{-4} m^3/s per m of width between the plates. What is the pressure gradient in the direction of flow if the plates are inclined at 60° with the horizontal and if the flow is downward between the plates?

\[-353.2 \text{ kPa/m}\]

4- Using the Navier-Stokes equations, find the velocity profile for fully developed flow of water ($\mu = 1.14 \times 10^{-3}$ Pa.s) between parallel plates with the upper plate moving as shown in figure. Assume the volume flow rate per unit depth for zero pressure gradient between the plates is 3.75×10^{-3} m^3/s. Determine:

a- the velocity of the moving plate.
b- the shear stress on the lower plate.
c- the pressure gradient that will give zero shear stress at $y = 0.25b$. ($b = 2.5$ mm)
d- the adverse pressure gradient that will give zero volume flow rate between the plates.

\[3 \text{ m/s} ; 1.37 \text{ N/m}^2 ; 2.19 \text{ kN/m}^2 \text{ per m} ; -3.28 \text{ kN/m}^2 \text{ per m}\]

5- A vertical shaft passes through a bearing and is lubricated with an oil ($\mu = 0.2$ Pa.s) as shown in figure. Estimate the torque required to overcome viscous resistance when the shaft is turning at 80 rpm. (Hint: The flow between the shaft and bearing can be treated as laminar flow between two flat plates with zero pressure gradient).

\[0.355 \text{ N.m}\]

6- Determine the force on the piston of the figure due to shear, and the leakage from the pressure chamber for $U = 0$.

\[295.1 \text{ N} ; 1.636 \times 10^{-8} \text{ m}^3/\text{s}\]
7- A layer of viscous liquid of thickness \(b \) flows steadily down an inclined plane. Show that, by using the Navier-Stokes equations that velocity distribution is:
\[
u = \frac{y}{2\mu} (2by - y^2) \sin \theta \]
and that the discharge per unit width is:
\[
Q = \frac{b^3}{3\mu} \sin \theta
\]

8- A wide moving belt passes through a container of a viscous liquid. The belt moving vertically upward with a constant velocity \(V_o \), as illustrated in figure. Because of viscous forces the belt picks up a film of fluid of thickness \(h \). Gravity tends to make the fluid drain down the belt. Use the Navier-Stokes equations to determine an expression for the average velocity \(v_{av} \) of the fluid film as it is dragged up the belt. Assume the flow is laminar, steady, and uniform.

\[
v_{av} = V_o - \frac{y^2}{3\mu}
\]

9- Determine the formulas for shear stress on each plate and for the velocity distribution for flow in the figure when an adverse pressure gradient exists such that \(Q = 0 \).

\[
\tau_{y=0} = -\frac{2\mu U}{b} ; \tau_{y=b} = \frac{4\mu U}{b} ; u = 3U \frac{y^2}{b^2} - 2U \frac{y}{b}
\]

10- A plate 2 mm thick and 1 m wide is pulled between the walls shown in figure at speed of 0.4 m/s. The space over and below the plate is filled with glycerin (\(\mu = 0.62 \text{ N.s/m}^2 \)). The plate is positioned midway between the walls. Using the Navier-Stokes equations, determine the force required to pull the plate at the speed given for zero pressure gradient; and the pressure gradient that will give zero volume flow rate.

\[496 \text{ N} ; 372 \text{ kN/m}^2 \cdot \text{m}\]

11- A slider plate 0.5 m wide constitutes a bearing as shown in figure. Estimate:

a- the load carrying capacity.

b- the drag.

c- the power lost in the bearing.

d- the maximum pressure in the oil and its location.

\[739.6 \text{ kN} ; 348.6 \text{ N} ; 348.6 \text{ W} ; 12500 \text{ kN/m}^2 ; 150 \text{ mm}\]

12- Consider a shaft that turns inside a stationary cylinder, with a lubricating fluid in the annular region. Using the Navier-Stokes equation in \(\theta \)-direction, show that the torque per unit length acting on the shaft is given by:
\[
T = \frac{4\pi\mu\omega R_1^2}{\left(\frac{R_1}{R_2}\right)^2 - 1}
\]

Where: \(\omega \) = angular velocity of the shaft.

\(R_1 \) = radius of the shaft.

\(R_2 \) = radius of the cylinder.